Identifying Waveband Roughness in Highway Pavements using Power Spectral Density Analysis

International Confer

UirginiaTech. Transportation Institute

Robert EVANS

international contenent Assets (company)

Swinburne University of Technology

SWINBURNE UNIVERSITY OF TECHNOLOGY Identifying Waveband Roughness in Highway Pavements using Power Spectral Density Analysis

The surface of a road pavement can become rough due to many factors:

- 1. Repetitive traffic loading causing permanent deformations within the pavement structure.
- 2. Aging or wear of the bituminous pavement seal, which leads to cracking and associated pot holes.
- 3. The occurrence of differential volume change within an expansive subgrade, which increases roughness and loss of shape. This increases in magnitude due to the presence of Gilgai relief.

Gilgai Phenomenon

Gilgai is best described as a soil that is in a state of slow continuous movement where the soil from the deeper layers is brought to the surface on the mounds, and the soil from the surface slips down to lower levels in the soil profile through the shrinkage cracks.

Model by Lytton et al. (1976)

Gilgai Phenomenon

The natural wavelength of Gilgai has been recorded at 4 m to 40 m and amplitudes range from just a couple centimetres up to 2 m

Gilgai in Texas, USA (Lytton et al., 1976)

Short wavelength Roughness vs. Long wavelength Roughness

International Roughness Index (IRI)

- Sprung Mass: Displacement m_{e} of the sprung mass: z_e Linear Damper: C₂ Linear Spring: k_s Unsprung Mass: **Displacement** m_{w} of the unsprung mass: Z_{μ} Linear Spring: kt Profile Input: y(x)Fixed contact length = 250 mm
- Developed in 1985 (World Bank Funds)
- Based on Quarter-Car Model that simulates behaviour of a passenger car at 80 km/hr.

Response of the IRI Filter

Power Spectral Density Analysis

9th International Conference on Managing Pavement Assets | May 18-21, 2015

Purpose of Research Project

- 1. To develop a series of new profile indices that clearly represent and quantify short and long wavelength roughness.
- 2. Create a series of new templates to identify pavements that contain unusually high concentrations of short or long wavelength roughness, and thus identify the critical roughness wavebands within individual pavements.
- 2. Evaluate waveband roughness progression rates.

Waveband Intervals Selected

Philosophy of New Templates

Template for PI: PSD–DOB4–300m containing data

Profile Index: PSD – DOB4 – 300m

Pavement Sections	Control Highway Sections	Location	Length (km)
ravement Sections	Mallee Hwy (B12) Sections 2 & 3	Piangil to SA Border	226.5 km
Mildura Red Cliffs	Calder Hwy (A79) Section 5	Ouyen to Mildura	169.9 km
Meringur Hattah	Hattah – Robinvale Rd (C252)	Hattah to Robinvale	62.3 km
Ouyen Piangil	Robinvale – Sea Lake Rd (C251)	Robinvale to Sea Lake	108.7 km
	Red Cliffs – Meringur Rd (C252)	Red Cliffs to Meringur	79.9 km
Hopetoun			647.3 km
Warracknabeal Dimboola Litchfield Horsham			
	Test Highway Sections	Location	Length (km)
	Borung Hwy (C234) Section 2	Litchfield to Warracknabeal	41.8 km
	Borung Hwy (C234) Section 3	Warracknabeal to Dimboola	39 km
	Henty Hwy (B200) Section 4	Horsham to Hopetoun	117.6 km
	- Jos		198.4 km

Equations to Build Templates

	Waveband	Waveband Identification Template Equations				
Single Octave Bandwidths	0000	Upper	IRI = 1.48 PI _{PSD-SOB3-300m} + 0.86	0.75		
	SOB3 1.41 m to 2.83 m	Average	IRI = 1.48 PI _{PSD-SOB3-300m} – 0.01			
		Lower	IRI = 1.48 PI _{PSD-SOB3-300m} – 0.61			
		Upper	IRI = 1.53 PI _{PSD-SOB4-300m} + 1.11	0.86		
	SOB4	Average	IRI = 1.53 PI _{PSD-SOB4-300m} + 0.53			
	2.03 111 10 5.00 111	Lower	IRI = 1.53 PI _{PSD-SOB4-300m} – 0.03			
	SOB5 5.66 m to 11.31 m	Upper	IRI = 1.73 PI _{PSD-SOB5-300m} + 1.64	0.77		
		Average	IRI = 1.73 PI _{PSD-SOB5-300m} + 0.88			
		Lower	IRI = 1.73 PI _{PSD-SOB5-300m} + 0.24			
	SOB6 11.31 m to 22.62 m	Upper	IRI = 1.40 PI _{PSD-SOB6-300m} + 2.07	0.60		
		Average	IRI = 1.40 PI _{PSD-SOB6-300m} + 1.07			
		Lower	IRI = 1.40 PI _{PSD-SOB6-300m} + 0.28			

Equations to Build Templates

	Waveband	Waveband Identification Template Equations				
Double Octave Bandwidths		Upper	IRI = 1.19 PI _{PSD-DOB3-300m} + 0.59	0.88		
	DOB3 1.41 m to 5.66 m	Average	IRI = 1.19 PI _{PSD-DOB3-300m}			
		Lower	IRI = 1.19 PI _{PSD-DOB3-300m} – 0.46			
		Upper	IRI = 1.23 PI _{PSD-DOB4-300m} + 1.02	0.89		
	DOB4	Average	IRI = 1.23 PI _{PSD-DOB4-300m} + 0.53			
	2.03 111 10 11.31 111	Lower	IRI = 1.23 PI _{PSD-DOB4-300m} + 0.04			
	DOB5 5.66 m to 22.62 m	Upper	IRI = 1.18 PI _{PSD-DOB5-300m} + 1.66			
		Average	IRI = 1.18 PI _{PSD-DOB5-300m} + 0.86	0.74		
		Lower	IRI = 1.18 PI _{PSD-DOB5-300m} + 0.19			
	DOB6 11.31 m to 45.25 m	Upper	IRI = 1.07 PI _{PSD-DOB6-300m} + 2.03	0.52		
		Average	IRI = 1.07 PI _{PSD-DOB6-300m} + 0.95			
		Lower	IRI = 1.07 PI _{PSD-DOB6-300m} + 0.05			

Section Identified as containing high concentration of waveband roughness

Same Site at Different Times

Frequency of Waveband Roughness Detection – Borung Hwy

	Waveband		SOB4	DOB4	SOB5	DOB5	SOB6	TOB2	DOB6	
	Centre Wavelength		4 m	5.66 m	8 m	11.3 m	16 m	16 m	22.6 m	
	Length of File		300 m	300 m	300 m	300 m	300 m	300 m	300 m	
	of	4007	No.	6	6	45	28	12	11	9
	ns (SS	1997	1997 %	0.78	0.78	5.84	Here, SOB5 is shown to			
	atio	1000	No.	5	13	58	be do	be dominant as there is		
	ugh	1999	%	0.65	1.69	7.53	up to five times more			
	Conce gth Rol	No.	8	18	64	roughness in this				
		%	1.04	2.34	8.31	rouginess in this				
	igh Ien	2005	No.	15	29	64	wave	waveband than hormal:		
	if Hi ave	2005	%	1.95	3.77	8.31	λ = 5.66 m to 11.3 m			
	on o J W(2007	No.	9	24	62	TT 20 2T			10
	ctic ong	2007	%	1.17	3.13	8.09	5.74	3.26 3.13		2.08
	ete L	2000	No.	13	34	77	55	33	27	14
		2009	%	1.69	4.42	10.0	7.14	4.29	3.51	1.81

20

Frequency of Waveband Roughness Detection – Henty Hwy

Waveband			SOB4	DOB4	SOB5	DOB5	SOB6	TOB2	DOB6	
Centre Wavelength		4 m	5.66 m	8 m	11.3 m	16 m	16 m	22.6 m		
Length of File		300 m	300 m	300 m	300 m	300 m	300 m	300 m		
of	1007	No.	20	38	70	55	37	20	11	
ns (1997	%	1.72	3.27	6.03	Again, SOB5 is shown to				
atio	1000	No.	23	38	111	be dominant as there is more than five times				
ntra	1999	%	1.97	3.27	9.53					
nce Roi	2001	2001 No.	21	37	105					
Col oth	2001	%	1.80	3.16	8.97	more	inis			
igh lend	2005	No.	22	45	103	wave	waveband than norm			
if H	2003	%	1.89	3.86	8.83	λ = 5.	66 m to			
	2007	No.	27	44	107					
ctic	2007	%	2.31	3.76	9.15	4.70	4.70 3.16 3	3.49	1.63	
ete	2000	No.	23	48	123	72	53	38	30	
D	2009	%	1.97	4.11	10.5	6.16	4.53	3.25	2.57	

Pavement Assets | May 18-21, 2015

Conclusions

- 1. A new method (and series of templates) has been developed for identifying sections of pavement that contain high concentrations of roughness within a particular waveband.
- 2. These template proved very successful in identifying pavements that had been affected by the presence of Gilgai relief (i.e. affected by long wavelength roughness).

They also remove the need for visual proof of Gilgai.

- 3. In areas of expansive soil geology, the frequency of pavement sections that revealed high concentrations of long wavelength roughness were up to 5 times greater.
- 4. Initial studies have revealed that pavement deterioration is quite different for the short and long waveband profiles indices.