

IMPACTS OF ENERGY DEVELOPMENT ON TEXAS ROADS

Zheng(Jenny) Li & Magdy Mikhail

9th International Conference on Managing Pavement Assets, May 18-21, 2015

1	Introduction	3-14
2	Statewide Pavement Condition	15-16
3	Truck Traffic From One Single Well Development Activities	17-24
4	Case Study of Proactive vs. Reactive Maintenance/Repair Approach	25-28
5	Mitigation Strategies	29-30
6	Conclusions	31-32

- The oil and gas drilling activities reached a record high in 2013 and impacted 50% of Texas counties.
- Texas recently has 839 drilling rigs operating

 nearly half of all rigs in the U.S. and 22.7
 percent of rigs worldwide.
- The U.S. Geological Survey estimates the Eagle Ford holds up to 7 billion to 10 billion in recoverable reserves.

Texas Oil and Gas Fields

- Barnett Shale
- Haynesville/Bossier Shale
- Eagle Ford Shale
- Granite Wash Formation
- Permian Basin

Drilling Permits vs. Completed Oil and Gas Wells

5

Completed Oil and Gas Locations in 2004-2013

1940-1950 era Tractor Trailer

FM roads were designed for this vehicle

2010 era Tractor Trailer

FM roads now must carry these vehicles

It's Not Just Oil & Gas

- Texas has 12,000 MW of wind generation, more than double any other state.
- Texas is home to 6 of the 10 largest wind farms in the U.S.
- According to data from the National Renewable Energy Laboratory, Texas has the best wind resource in the U.S.
- Most wind farms are located in areas overlapping oil and gas development.

Oversize/Overweight Trucks

Everyone is Wondering What is Happening

Road Damages

Base Failures

Edges

Distress

Rutting

Traffic/Safety Concerns

Texas County Performance Measure Change FY2010-2013

Change in Percent "Good" or Better

15

County	FY2010	FY2011	FY2012	FY2013	FY2013-FY2012
Hansford	95.76%	95.87%	89.16%	74.24%	-14.92%
Karnes	86.64%	82.96%	64.48%	58.44%	-6.04%
La Salle	86.08%	71.47%	70.36%	58.60%	-11.76%
Dimmit	84.27%	75.77%	83.32%	72.40%	-10.92%
Lipscomb	88.53%	88.08%	91.18%	77.01%	-14.17%
Roberts	91.66%	96.72%	96.20%	83.00%	-13.20%

- Traffic data plays a critical role on estimating the impact of energy sectors.
- TxDOT 32 Weight-in-Motion data sites on interstates or major routes.
- Traffic counts are one and a half or two years behind.

- Stage 1: Drilling well site includes pad site preparation, rig mobilization, drilling operations, and rig removal.
- Stage 2: Fracturing includes mobile rig set-up, fracturing activity, rig removal, and pad restoration.
- Stage 3: Production includes trips for routine maintenance activities.

Hydraulic Fracturing Process

Halliburton Fracking Fleet

Total Truck ESALs for One Single Well in Barnett Shale

Type of Vehicle	Number	Loaded Weight	Empty Weight	One-Way Trips		18-k ESAL	18-k ESAL			
Type of venicle	of Axles	(in pounds)	(in pounds)	(per Wellsite)	Type of Work	(per Truck)	(per Wellsite)			
Drilling Wellsite										
Rock Hauler	5	84,000	35,000	70	Pad Construction	2.99	209.30			
Rig (install)	5	100,000	n/a	2	Rig Set-up	6.21	12.42			
Rig (removal)	5	100,000	n/a	2	Rig Removal	6.21	12.42			
Bob-Tail	5	80,000	20,000	20	Equipment	2.45	49.00			
Bob-Tail	5	80,000	20,000	20	Equipment	2.45	49.00			
Bob-Tail	5	80,000	20,000	8	Drilling Pipe	2.45	19.60			
Bob-Tail	5	80,000	20,000	6	Cement	2.45	14.70			
Bob-Tail	5	80,000	20,000	9	Drilling Mud	2.45	22.05			
Subtotals				137			388.49			
Fracturing										
Work-over Rig	5	80,000	n/a	2	Rig Set-up	2.45	4.90			
Work-over Rig	5	80,000	n/a	2	Rig Removal	2.45	4.90			
Tank Truck	5	80,000	35,000	70	Frac Tanks	2.45	171.50			
Water Tanker	5	80,000	35,000	685	Water for Fracing	2.45	1,678.25			
Water Tanker	5	80,000	35,000	214	Frac Water Removal (50%)	2.45	524.30			
Bob-Tail	5	80,000	35,000	24	Equipment	2.45	58.80			
Subtotals 997							2,442.65			
Production										
Tank Truck	5	80,000	35,000	353	Empty Dehydration Tanks	2.45	864.85			
Subtotals				353			864.85			

Total ESALs: 388.49+2,442.65=2,781.14

Total Truck ESALs for One Single Well in Eagle Ford

Type of Vehicle	Number of Axles	Loaded Weight (in pounds)	/eight One-Way Trips 18-k ES nds) (per Wellsite) (per Tru		18-k ESAL (per Wellsite)				
Construction Wellsite									
Ingress Overweight Loads	6	108,000	1	4.083	4.083				
Ingress Overweight Loads	6	118,000	1	5.719	5.719				
Egress Overweight Loads	6	108,000	1	4.083	4.083				
Egress Overweight Loads	6	118,000	1	5.719	5.719				
7-Axle Truck Trailer Combo Lowboy Trailer	7	141,000	14	3.562	49.868				
1/2-3/4-1 ton Truck	2	10,000	94	0.016	1.504				
5-axle Semi Tractor Trailer	5	80,000	206	2.451	504.906				
Subtoal			318		575.882				
Drilling Wellsite									
Ingress Overweight Loads	6	110,000	4	4.395	17.58				
Ingress Overweight Loads	6	95,000	2	2.469	4.938				
Ingress Overweight Loads	6	90,000	1	3.959	3.959				
Ingress Overweight Loads	6	80,000	1	2.451	2.451				
Egress Overweight Loads	6	110,000	4	4.395	17.58				
Egress Overweight Loads	6	95,000	2	2.469	4.938				
Egress Overweight Loads	6	90000	1	3.959	3.959				
Egress Overweight Loads	6	80,000	1	2.451	2.451				
5-axle Semi Tractor Trailer low boy	5	80,000	144	2.451	352.944				
9-axle Semi Tractor Trailer	9	148000	80	4.673	373.84				
Subtotal			240		784.64				
Fracturing									
5-axle Semi Tractor Trailer	5	80000	560	2.451	1372.56				
Subtotals			560		1372.56				
Production									
5-axle Semi Tractor Trailer	5	80000	2190	2.451	5367.69				
Subtotals			2190		5367.69				

Total ESAL: 575.88+784.64+1372.56=2,733.08

- The total number of ESALs for the site construction, drilling, and fracturing is very close in these two shale formations.
- The biggest difference is in the production phase.
 - Eagle Ford
 - Barnett Shale
 - Permian Basin
- The number of truck loads depends on a variety of factors such as well type and depth, geology, drilling technology, water needs, and product transportation.

- Dimmit County
 - FM 2688 (12.61 Miles)
 - Surface treatment over flexible base
 - 47 drilling permits issued along FM2688 in 2012

- Reactive vs. Proactive
 - Reactive: roads are fixed or maintained after damage has occurred.
 - Proactive: major rehabilitation to handle new expected traffic loads.
- Analysis Approach
 - The reduction in pavement life was calculated based on the accumulated truck traffic generated by the nearby permitted wells.
 - Average reconstruction cost is \$156,905 per lane mile.
 - Additional annual replacement cost was calculated.

Estimated 20-Year ESAL

Year	Design Annual	Number of New Well	Accumulated Number of	Development	Production	Fracture 18-	Total Well Site 18-k	Accumulated Well Site 18-k	Accumulated Total 18-k
	ESAL	Sites	Well Sites	18-k ESAL	18-k ESAL	k ESAL	ESAL	ESAL	ESAL
1	17,100	47	47	173,712	0.00		173,711.53	173,711.53	190,811.53
2	17,100	0	47	-	40,608.00		40,608.00	214,319.53	248,519.53
3	17,100	0	47	-	40,608.00		40,608.00	254,927.53	306,227.53
4	17,100	0	47	-	40,608.00		40,608.00	295,535.53	363,935.53
5	17,100	0	47	-	40,608.00		40,608.00	336,143.53	421,643.53
6	17,100	0	47	-	40,608.00	114,804.55	155,412.55	491,556.08	594,156.08
7	17,100	0	47	-	40,608.00	-	40,608.00	532,164.08	651,864.08
8	17,100	0	47	-	40,608.00	-	40,608.00	572,772.08	709,572.08
9	17,100	0	47	-	40,608.00	-	40,608.00	613,380.08	767,280.08
10	17,100	0	47	-	40,608.00	-	40,608.00	653,988.08	824,988.08
11	17,100	0	47	-	40,608.00	114,804.55	155,412.55	809,400.63	997,500.63
12	17,100	0	47	-	40,608.00	-	40,608.00	850,008.63	1,055,208.63
13	17,100	0	47	-	40,608.00	-	40,608.00	890,616.63	1,112,916.63
14	17,100	0	47	-	40,608.00	-	40,608.00	931,224.63	1,170,624.63
15	17,100	0	47	-	40,608.00	-	40,608.00	971,832.63	1,228,332.63
16	17,100	0	47	-	40,608.00	114,804.55	155,412.55	1,127,245.18	1,400,845.18
17	17,100	0	47	-	40,608.00	-	40,608.00	1,167,853.18	1,458,553.18
18	17,100	0	47	-	40,608.00	-	40,608.00	1,208,461.18	1,516,261.18
19	17,100	0	47	-	40,608.00	-	40,608.00	1,249,069.18	1,573,969.18
20	17,100	0	47	-	40,608.00	-	40,608.00	1,289,677.18	1,631,677.18

Number of Additional Well Permits	20-Year ESAL	Proposed Plans	Tota	al Proactive Cost	Tota	al Reactive Cost
0 more	1.63 million	2" Thin Overlay	\$	2,004,536	\$	13,756,000
5 more	3.05 million	5" Thick Overlay	\$	4,654,149	\$	23,303,952
10 more	4.47 million	Thick ACP Reconstruction	\$	5,723,533	\$	27,452,880

- Proactive is more cost effective than reactive.
- Budget constrain, boom and bust cycles, etc.

- Preventing damage before it happens by posting load limits
 - Standard operation for oversize and overweight vehicles
 - Emergency load posting
- Pavement preservation treatments
 - Both proactive and reactive approach
 - 4-year pavement management plan
- Updating design standards
 - Triaxial design check
 - Nondestructive testing
 - Cross-sectional width on the rural two-lane highways

- Legislation
 - HB1025 allocated \$450 million (\$225 million to counties and \$225 million to state).
 - Voters approved a constitutional amendment that dedicated a portion of Texas revenue from the oil and gas industry to the State Highway Fund in October, 2014.
 - The Proposition 1 Fund, FY2015, additional \$1.74 billion and another \$2.4 billion for the 2016-2017 biennium.

- Pavement performance deteriorated significantly in heavily impacted counties.
- Oil and gas development activities generate large amount of heavy truck traffic. The method of how the oil and nature gas product was transported had a significant impact on the pavements.
- Proactive approach is more cost effective than reactive approach.
- Posting load limits, updating maintenance strategies, and modifying design standards could help mitigate the energy development related impact.

Jenny Li Tel: 512-832-7319 Email: <u>Jenny.Li@txdot.gov</u>

Magdy Mikhail Tel: 512-832-7210 Email: <u>Magdy.Mikhail@txdot.gov</u>

