

International Con

WirginiaTech. Transportation Institute

Three-Dimensional Surface Texture of Asphalt Pavements Containing Reclaimed Asphalt Pavement (RAP)

Saman (Sam) Esfandiarpour, PhD Candidate Qingfan Liu, PhD Candidate Ahmed Shalaby, PhD, P.Eng

University of Manitoba

ntemational contellence ussals lickness

- Introduction
- Pavement Surface Texture Measurements
- Texture Parameters and Results
- Laboratory Tests on Cored Samples
- Conclusions

INTRODUCTION

Pavement Texture

• Pavement texture is defined as "the deviations of the pavement surface from a true planar surface" (Hall et al. 2009).

Texture Classification

Texture Classification	Relative Wavelengths, λ	Characteristics
Micro-texture	$\lambda < 0.5 \text{ mm}$	Fine sand or surface roughness of large aggregate
Macro-texture	$0.5 \text{ mm} \le \lambda < 50 \text{ mm}$	Spaces and depths between aggregate particles
Megatexture	$50 \text{ mm} \le \lambda < 500 \text{ mm}$	Construction or pavement distress
Unevenness (Roughness)	$0.5 \text{ m} \le \lambda < 50 \text{ m}$	Construction or pavement distress

Micro- and Macro-texture

Importance of Texture

Source: Hall, J., Smith, K., Titus-Glover, L., Wambold, J., Yager, T., and Rado, Z. (2009b). Guide for Pavement Friction, National Cooperative Highway Research Program, Web-Only Document 108, Transportation Research Board, Washington, D.C.

- Assess the impact of high RAP content on pavement surface texture after 5 years in service
- Evaluate the mechanical properties of extracted core samples containing RAP.

Test Site 4 Sections with various RAP content

- AADT = 25,000
- Two-lane rural highway
- 5 years old asphalt pavement in Manitoba, Canada.

	0%RAP150	15%RAP150	50%RAP150	50%RAP200	
4					
	\rightarrow				

9th International Conference on Managing Pavement Assets | May 18-21, 2015

Mix Properties

 Pavement Sections with Various Percentages of RAP and Different Binders

Section	RAP content	Virgin binder used
0%RAP150	0%	Pen 150-200 (PG 58-28)
15%RAP150	15%	Pen 150-200 (PG 58-28)
50%RAP150	50%	Pen 150-200 (PG 58-28)
50%RAP200	50%	Pen 200-300 (PG 52-34)

Aggregate Gradation

9th International Conference on Managing Pavement Assets | May 18-21, 2015

Pavement Surface Texture Measurements

3D Texture Measurement (Portable Line-laser Scanner)

→ Horizontal resolution < 0.05 mm

> Vertical accuracy better than 0.1 mm.

> Area of 100 mm × 100 mm

> 2448 \times 2048 data points

Pavement Surface and its Recovered 3D Texture Heights

Texture Analysis Discrete wavelet transform (DWT)

• The measured texture heights were decomposed into five levels by using DWT to define its micro-texture and macro-texture.

Duabechies:

Db3-wavelet function

Texture Analysis Decomposition Levels

6/4/2015

9th International Conference on Managing Pavement Assets | May 18-21, 2015

Decomposition Structure

Where

- cA_j = approximation coefficients,
- cD_i^h = horizontal detail coefficients,
- cD_i^d = diagonal detail coefficients,
- cD_i^v = vertical detail coefficients,
 - j = decomposition level, j = 1...L,
 - L = maximum decomposition level.

 $cA_L \ cD^h_L \ cD^d_L \ cD^v_L$

6/4/2015

Texture Analysis Decomposition levels and their wavelength

Decomposition levels	Level 1	Level 2	Level 3	Level 4	Level 5
Equivalent wavelength, λ (mm)	< 0.06	0.12	0.24	0.49	> 0.98
Texture classification	Micro-Texture			Macro-Texture	

Texture Paramters and Results

3D Texture Paramateres

Texture parameter	Calculation formula	Category
Simulated mean texture depth (SMTD, mm)	$SMTD = h_{max} - \frac{1}{A} \sum_{i=1}^{M} \sum_{k=1}^{N} \frac{1}{3} a h_{ik}$	Macro-texture
Root mean square roughness (S _q , mm)	$S_q = \sqrt{\frac{1}{A} \sum_{i=1}^{M} \sum_{k=1}^{N} a h_{ik}^2}$	Macro-texture
Skewness (S _{sk} , unitless)	$S_{sk} = \frac{1}{AS_q^3} \sum_{i=1}^M \sum_{k=1}^N a h_{ik}^3$	Macro-texture
Kurtosis (S _{ku} , unitless)	$S_{ku} = \frac{1}{AS_q^4} \sum_{i=1}^M \sum_{k=1}^N a h_{ik}^4$	Macro-texture
Normalized power spectra energy (NPSE, mm ² /mm ²)	$NPSE = \sum_{j=1}^{L} NE_{j}$ $NE_{j} = \frac{1}{A} \sum_{i=1}^{M_{j}} \sum_{k=1}^{N_{j}} \left\{ \frac{cD^{d}_{j}}{2^{j}} \right\}_{ik}^{2}$	Micro-texture

Simulated mean texture depth (SMTD, mm)

Sand Patch Method (SPM)

SPM \rightarrow mean texture depth (*MTD*) of pavement surface macro-texture.

$$MTD = \frac{4V}{\pi D^2}$$

where:

MTD = Mean texture depth, mm $V = Sample volume, mm^3$ D = Average material diameter, mm

Pavement Texture Results

Section	SMTD (mm)	S _q (mm)	S _{sk}	S _{ku}	NPSE (mm ² /mm ²)
0%RAP150	0.77	0.22	-0.01	4.57	0.0615
15%RAP150	0.84	0.24	-0.01	4.74	0.0635
50%RAP150	1.07	0.30	-0.21	4.93	0.0666
50%RAP200	1.07	0.29	-0.18	5.14	0.0645

Factors Affecting Pavement Texture

- Maximum aggregate size
- Coarse and fine aggregate types
- Aggregate gradation,
- Mix air voids

SMTD (Macro-Texture) Mean and error bar

SMTD (Macro-Texture) Multiple comparison at 95% confidence level

- Sections containing 50% RAP showed higher SMTD.
- Binder grade did not significantly influence texture height.

 S_{q} (Macro-Texture)

S_q (Macro-Texture) Multiple comparison at 95% confidence level

Normalized Power Spectra Energy (Micro-Texture)

Normalized Power Spectra Energy (Micro-Texture)

LABORATORY TEST ON CORED SAMPLES

Creep Compliance Test Results

9th International Conference on Managing Pavement Assets | May 18-21, 2015

Indirect Tensile Test (MPa) at -10 • C

Resilient Modulus (MPa)

- After 5 years of service, pavement sections with high RAP content (50%) showed better macro-texture compared to the lower RAP content (0%, 15%) sections.
- RAP did not have negative impacts on micro-texture of the pavement surface.

Conclusions (Cont'd)

- Softer binder did not have significant impact on either macro-texture or micro-texture.
- High RAP mixtures showed improvement in resilient modulus but less thermal cracking resisitance at low temperature.

Thanks for your attention.