

WirginiaTech. Transportation Institute

A Financial Model to Estimate Annual Payments Required under Performance Based Contracts

Inference on Managung Mail Conference UISSETS (CRUPAG)

Goran Mladenovic and Cesar Queiroz

- Introduction
- Objective
- Graphical Financial Model for Performance Based Contracts
- Numerical Example
- Summary and Conclusions

Introduction

- Over the last couple of decades an increased interest by road agencies to adopt Performance Based Contracts (PBC) for road maintenance as a means to increase the efficiency of maintenance operations
- The overall perception is that PBC:
 - provide cost savings compared to other maintenance procurement methods
 - enable a greater transfer of risks from the agency
 - promote innovation within the industry, ultimately leading to improved maintenance level of service (Kim et al. 2008)
- Performance based contacts may have different forms and include activities like routine and/or periodic maintenance

Continuum of PPP options

PPP OPTIONS

The World Bank Toolkit presents a broad definition of PPP including performance-based contracts

- To develop a model for estimating the annual payments by the government that will be required by potential contractors to undertake a PBC project
- Based on the World Bank/PPIAF Toolkit for Public-Private Partnership in Roads and Highways (World Bank 2009), which is available at:

http://www.ppiaf.org/sites/ppiaf.org/files/documents/toolkit s/highwaystoolkit/index.html

Financial Model for Performance Based Contracts

- Developed in MS Excel[®]
- Consists of five sheets:
 - Data sheet
 - Cash Flow Graph
 - Debt Graph
 - Dividend Graph
 - Summary of Assumptions and Results

Data Sheet

Graphical Model for Financial Simulation of Performance Based Contracts

Summary of project assumptions

Key Project Characteristics

- Contract life
- Rehabilitation cost
- Maintenance cost
- Initial annual payment
- Payment growth
- Investment subsidies
- Equity

- Debt maturity
- Interest rate
- Grace period
- Inflation rate
- Corporate tax rate
- VAT rate

Five Key Project Indicators/ ratios:

Project IRR	Equity IRR	ADSCR		PV (VAT + Tax -
(real/year7)	(real/year7)	(min)	(min)	AP - Subsidies)
12.53%	22.84%	1.21		-23,458

- **Project IRR** the project financial Internal Rate of Return for the contract period (in real terms)
- **Return on Equity** (ROE) for the contract period (in real terms)
- The minimum **Annual Debt Service Coverage Ratio** (ADSCR)
- The minimum Loan Life Coverage Ratio (LLCR)
- Present Value (PV) of net financial contribution from government

Annual Debt Service Coverage Ratio (ADSCR)

$$ADSCR_i = \frac{CBDS_i}{DS_i}$$

- CBDS_i net cash flow before debt service in year i (i.e., the amount of cash remaining in the project company after operating costs and taxes have been paid)
- **DS**_i debt service to be paid in year *i* (principal and interests)

Loan Life Coverage Ratio (LLCR)

$$LLCR_{i} = \frac{NPV(CBDS_{i} \rightarrow end)}{DS_{i} \rightarrow end}$$

- NPV (CBDS_i → end) the present value of the net cash flow before debt service from year *i* to the end of the debt repayment period
- DS_i → end total of debt service remaining at year i (principal and interests).

Cash Flow Graph

Debt Graph

Dividend Graph

Summary of Assumptions and Results

Summary of Assumptions and Results

SUMMARY OF THE MAIN ASSUMPTIONS

GENERAL			
Contract life	7	years	
Rehabilitation Period	1	years	
Rehabilitation costs	20,000	kUSD	
Amortization	6	years	

FINANCIAL STRUCTURE

Subsidy	0%	of the rehabilitation costs
Equity	25%	of the rehabilitation costs
Debt		
Maturity	5	years
Interest rate	7.0%	
Grace period	1	years
Repayment of loan	P+I consta	nt

ANNUAL PAYMENT			
First year Payment	7300	kUSD	
Payment growth	0.0%	per year	
ANNUAL MAINTENANCE	ECOSTS		
ANNUAL MAINTENANCE Amount in opening year	<u>E COSTS</u> 1,000	kUSD per year	
ANNUAL MAINTENANCE Amount in opening year	COSTS 1,000	kUSD per year	
ANNUAL MAINTENANCE Amount in opening year	COSTS 1,000	kUSD per year	
ANNUAL MAINTENANCE Amount in opening year OTHER KEY PARAMETI	E COSTS 1,000 ERS	kUSD per year	
ANNUAL MAINTENANCE Amount in opening year OTHER KEY PARAMETI Inflation rate	ECOSTS 1,000 ERS 4.0%	kUSD per year	
ANNUAL MAINTENANCE Amount in opening year OTHER KEY PARAMETI Inflation rate Corporate tax	ECOSTS 1,000 ERS 4.0% 20.0%	kUSD per year	

SUMMARY OF THE RESULTS

CING PLAN
n kUSD) 21,346
litation costs (nominal terms) 20,800
sed Interests 546
CIAL RATIOS
m ADSCR (Annual Debt Service Coverage Ratio) 1.21
m LLCR (Loan Life Coverage Ratio) 1.24
m PLCR (Project Life Coverage Ratio) 1.75
C AUTHORITIES' FINANCIAL FLOWS
Availability Payments (kUSD) -29,447
Subsidy (kUSD) 0
he VAT (kUSD) 4,417
he Coporate Taxes (kUSD) 1,573
he State revenues (kUSD) -23,458

Numerical Example

A. Project Parameters

Contract Life: 7 years

Rehabilitation cost: \$20 million (in Year 1)

Annual Maintenance Cost in subsequent years: \$1 million

Capital structure: Equity, 25%; Loans, 75%

Discount rate (real terms): 6%

Inflation: 4% per year

Tax rates: (a) VAT: 15%; (b) Corporate tax: 20%

Amortization period: 6 years

B. Loan Terms

Nominal Interest rate: 7% per year Loan grace period: 1 year Loan repayment period: 4 years

Numerical Example

Assume the following targets (or constraints) to be met for the project to be able to attract private investors:

Project Financial Internal Rate of Return:FIRR $\geq 8\%$ Equity Internal Rate of Return:ROE $\geq 14\%$ Annual Debt Service Cover Ratio:ADSCR ≥ 1.2

Numerical Example

Result: an **Annual Payment of \$7.7 million** (in the first year of operation; payments in subsequent years would be adjusted according to inflation) should be able to attract private investors.

The corresponding three main financial indicators are:

- FIRR = 29.0%,
- ROE = 30.8%, and
- ADSCR = 1.21

Summary and Conclusions

- Performance Based Contracts (PBC) have been increasingly used over the last couple of decades as a means to increase efficiency of maintenance operations
- The paper presented the development of a user-friendly model to assess the required annual payments under PBC
- The applicability of the tool has been demonstrated through a numerical example of a potential road PBC project
- The model:
 - can be applied to any other type of infrastructure
 - can be used to carry out sensitivity analyses
 - is particularly useful when only preliminary project data is available

Thank you!

Goran Mladenovic Associate Professor, University of Belgrade Faculty of Civil Engineering Bulevar kralja Aleksandra 73 11000 Belgrade, Serbia Phone: +381 63 7398040 E-mail: <u>emladen@imk.grf.bg.ac.rs</u>

Cesar Queiroz Senior Advisor, Claret Consulting 2200 Pennsylvania Ave, NW 4th Floor East Washington, DC 20037, USA Phone: +1 301 755 7591 E-mail: gueiroz.cesar@gmail.com