THE USE OF MEASURED PAVEMENT PERFORMANCE INDICATORS AND TRAFFIC

IN DETERMINING OPTIMUM MAINTENANCE ACTIONS FOR A TOLL ROAD IN SOUTH AFRICA

International Con

ntemati

UirginiaTech. Transportation Institute

AND COMPARISON WITH HDM-4 PERFORMANCE PREDICTIONS

ENT ASSETS (ICINPA9)

nal Conference on

Surita Madsen-Leibold

PRESENTATION LAYOUT

Presentation Layout

Introduction

Project location and nature of the study

Road pavement

- Structure
- Maintenance actions

Data collection and monitoring

Climate; traffic; pavement performance

Presentation Layout

- Pavement performance modelling
- Comparison of predicted with actual performance

INTRODUCTION

Project locality

Introduction

Significance and nature of the study

- First BOT contract in SA
- Extensive data collected on traffic and pavement performance over last 17 years
- Data used to determine optimal maintenance actions
- Data used to compare actual to HDM-4 predicted pavement performance

Project Layout

ROAD PAVEMENT

DATA COLLECTION AND MONITORING

Climate

Climate

Traffic

Data collection

- Two High-Speed Weigh-In-Motion (HSWIM)stations along route: Kranskop (Section 1) and Pietersburg (Section 2)
- Period 1997 to date

Parameters determined/obtained

- Vehicles classified in toll classes 1,2,3 and 4
- Average daily traffic (ADT) determined for four classes
- E80/HV determined for trucks (classes 2,3,4)

Traffic

Toll Classes

- Class 1(Light vehicles): motor vehicles, with or without a trailer, including motorcycles
- Class 2 (Medium heavy vehicles): heavy vehicles with two axles.
- Class 3 (Large heavy vehicles): heavy vehicles with three or four axles.
- Class 4 (Extra large heavy vehicles): heavy vehicles with five or more axles

CTO Kranskop (Bela-Bela) Average annual daily traffic Year Year -ADT ---ADTT ----ADLT ---ADT ---ADTT -----ADLT

CTO Constantia (Pietersburg)

Pavement performance monitoring

Data collection

- Annual visual assessments (THM9) degree and extent 200m long segments
- Regular instrument measurements in slow lane WTs: Profilometer (IRI, Rutting,); FWD defections

Pavement performance monitoring

Applicable Specification	Parameter	Acceptance Criteria				
Functional condition (during operation)	Road roughness (International Roughness Index – IRI in m/km)	< 2.9 over 90 % of 5km sections < 3.6 over 95 % of 5km sections 4.6 maximum				
	Skid resistance (Sideway-force coefficient)> 0.4 over 90 % of 1km sections0.35 minimum					
	Rut Depths (mm)< 15 over 90 % of 1km sections25 maximum					
	Structural failures (length of patches, potholes etc)	< 50m per 1km sections				
Structural condition (at end of contract)	Deflection at end of contract	Do < 370 μm (90th percentile per uniform section) BLI < 180 μm (90th percentile per uniform section) ROC > 120 μm (90th percentile per uniform section)				
	Visual condition per uniform section at end of contract	VCI > 50 per 1 km segmentMaximum annual change in VCI is 25%DegreeExtent*Crocodile cracking ≤ 3 Longitudinal cracking ≤ 3 PumpingAll ≤ 5 Patching ≤ 3 * % of length				

Pavement performance monitoring

Optimization of maintenance actions

 Continuous condition monitoring data was used to predict future pavement condition and to time maintenance actions to ensure conformance to the contractual condition criteria

PAVEMENT PERFORMANCE MODELLING

Pavement performance modelling

Modelling the road

- Software used : HDM-4 Version 2
- Two uniform sections : Sections 1 and 2 based on difference in pavement, traffic, maintenance actions
- Period : 1997 to 2014
- Road modelled as four lane carriageway; 17.8 m wide

• Primary variables in HDM-4 deterioration models

- Pavement structure, type and age
- Traffic loading
- Climate
- Maintenance actions and timing
- Initial pavement condition and condition after each maintenance action
- Calibration factors

Pavement performance modelling

Climate Parameter			v			
		unit	Naboomspruit (Mookgapong)	Mokopane	Polokwane	Project road section
	Minimum Temperature	°C	-	-0.6	-2.3	-1.2
Temperature	Maximum Temperature	°C	-	39.4	37.6	38.8
	Average Temperature Range	°C	-	14.2	13.7	13.9
	Mean Temperature	°C	-	20.7	18.6	19.6
	Days T >32°C	No	-	59.3	23.0	41.1
	Temperature Classification	-	-	Subtropical- Hot	Subtropical- Hot	Subtropical- Hot
	Mean Monthly mr Precipitation (MMP)		52.4	32.2	42.4	42.3
Moisture	Duration of dry season	months	5	5	5	5
	Thornthwaite's Moisture Index (Im)	-	-20 to 0	-20 to 0	-40 to 0	-20 to 0
	Moisture Classification	-	Sub-Humid Dry	Sub-Humid Dry	Sub-Humid Dry/Semi- Arid	Sub-Humid Dry

Pavement performance modelling

HDM-4 Climate Zones (SA Coverage)												
CZ_NAME	MOISTCLASS	ТЕМРТҮРЕ	DAYS GT32	ANN TEMPRGE	FREEZE IDX		MM P	MEAN TEMF	I DRY SEAS		C F S T	PC DW
		Subtropical-										
SA - Arid (Im <-40)	Arid	Hot	60	17	60	-50	12	21	10.8	3 0		2
SA - Semi Arid		Subtropical-										I
(-40 <lm<-20)< td=""><td>Semi-Arid</td><td>Hot</td><td>60</td><td>17</td><td>50</td><td>-30</td><td>38</td><td>18</td><td>8</td><td> (</td><td></td><td>5</td></lm<-20)<>	Semi-Arid	Hot	60	17	50	-30	38	18	8	(5
SA - Sub Humid Dry		Subtropical-										
(-20 <lm<0)< td=""><td>Sub-Humid Dry</td><td>Cool</td><td>40</td><td>13</td><td>30</td><td>-10</td><td>48</td><td>16</td><td>6</td><td>0</td><td></td><td>8</td></lm<0)<>	Sub-Humid Dry	Cool	40	13	30	-10	48	16	6	0		8
SA - Sub Humid	Sub-Humid	Subtropical-										
Moist (0 <im<20)< td=""><td>Moist</td><td>Hot</td><td>30</td><td>12</td><td>10</td><td>10</td><td>66</td><td>18</td><td>6</td><td>C</td><td><u> </u></td><td>10</td></im<20)<>	Moist	Hot	30	12	10	10	66	18	6	C	<u> </u>	10
		Temperate-										
SA - Humid (Im > 20)	Humid	Cool	15	10	5	50	92	18	6	<u> </u>	<u>, </u>	15
		HDM-4 C	alibra	tion Valu	es (Ty	pical)						
CZ		MOIS	TCLASS	kcia	ı kcp	a	kciw	kcpw	kvp	kg	jm	
SA - Arid (Im <-40)			Ar	id 1.	5 0	.2	1.5	0.3	0.3	0).39	
SA - Semi Arid (-40<		Semi-Arid		id 1.:	3 0	.3	1.3	0.3	0.5		0.5	
SA - Sub Humid Dry (-20 <im<0)< td=""><td colspan="2">Sub-Humid Dry</td><td>ry 1.2</td><td>2 0.</td><td>.4</td><td>1.2</td><td>0.4</td><td>0.6</td><td>0.</td><td>.61</td></im<0)<>			Sub-Humid Dry		ry 1.2	2 0.	.4	1.2	0.4	0.6	0.	.61
SA - Sub Humid Moist(0 <im<20)< td=""><td colspan="2">Sub-Humid Moist</td><td>st 1.</td><td>1 0</td><td>.6</td><td>1.1</td><td>0.6</td><td>0.9</td><td>0</td><td>).61</td></im<20)<>			Sub-Humid Moist		st 1.	1 0	.6	1.1	0.6	0.9	0).61
SA - Humid (Im > 20)			Humid			1 0	.6	1.1	0.6	0.9	0).88

COMPARISON OF PREDICTED WITH ACTUAL PERFORMANCE

Processing of visual assessment data

- Visual assessment data in terms of degree and extent for 200 m segments
- HDM-4 predictions for defects generally in terms of % of total road area
- Used cracking index to compare measured with predicted

$$CI = \sum_{i=1}^{5} W_i . C_i$$

Where:

- Wi = Weighing factor for crack type i,
- and Ci = Percentage (%) cracked area for crack type i
- All cracks: degree 1 to 5
- Wide cracks: degree 3 to 5

CRACK TYPES AND WEIGHING FACTORS USED FOR CRACKING INDEX						
Crack Type	Weighting Factor	Comment				
Crocodile Cracks	1.67	Includes Wheelpath And General Crocodile Cracking				
Map Cracks	0.80	None				
Longitudinal Cracks	0.72	Includes Only Longitudinal Cracking In The Wheelpath				
Transverse Cracks	0.77	None				
Block Cracks	1.04	Includes Block Cracks With Spacing Of 0.5 m And Greater				

CONVERSION BETWEEN EXTENT RATING FOR CRACKING AND THE % CRACKED AREA							
	% AREA CRACKED						
EXTENT	CROCODILE	SURFACE OR	R LONGITUDINAL	TRANSVERSE	ВLOCK		
RATING	CRACKS	MAP CRACKS	CRACKS	CRACKS	CRACKS		
1	1.5	1.5	0.7	0.5	3.5		
2	3.5	3.5	1.7	1.6	7.0		
3	6.25	6.25	3.2	2.5	10.5		
4	10	10	5.7	5.3	14.5		
5	20	20	7.3	6.1	20		

Cracking - Section 1

Cracking - Section 2

Rutting - Section 2

Roughness - Section 1

Roughness - Section 2

• Concluding remarks

- The predictions are of the same order of magnitude than the actual measurements, but the rate of distress development differs
- Some measurement data (instrument and visual data) are inconsistent; this influence comparability

Suggestions to improve comparability

- Deterioration modelling calibration factors are to be adjusted and/or calibrated with actual performance
- Heavy vehicles; structural distresses pre-dominantly in slow lane
 - recommend modelling of slow lanes only
- Accuracy of field measurements can be improved by ensuring calibration of equipment, diligent quality control, independent verification of visual assessments and use of laser technology to detect cracked areas

Thank You

