

Measuring Pavement Condition Data for a Long-term Pavement Performance Study on New Zealand Roads.

D Brown





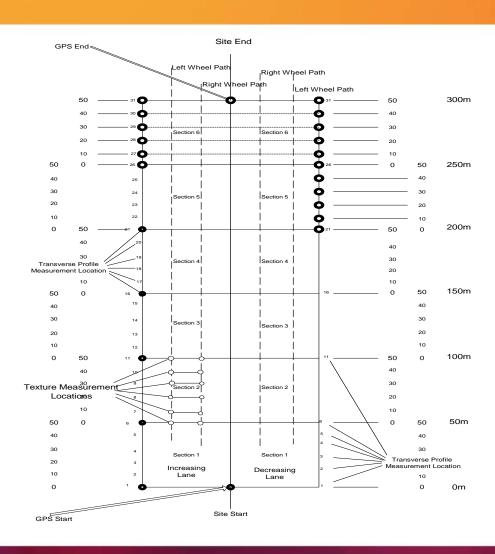








### Measuring Pavement Condition Data for a Long-term Pavement Performance Study


- Background
- Measurement Requirements
- Equipment
  - Roughness
  - Rutting
  - Texture
  - Condition
- Calibration and Validation
  - Roughness
  - Rutting
  - Texture
  - Condition
- Results
- Summary

## Background

- Project inception 2001
  - 2001 63 sites established on State Highways
  - 2003 Parallel Local Authority Project, 81 sites
  - 2009 Contracts combined
  - 2015 Data collection completed on 145 sites.
- Project Design
  - Appropriate Methodology
    - Surveyor Bias
    - Climate
    - Equipment Measurement Procedures
  - Manual Type Data Collection and Site Establishment
  - Class1 Type Measuring Equipment
  - Measurement Location
  - Visual Inspection

#### Sites

- 300m long
- 2 lanes
- Divided into 12 50m Subsections;
- Measurements
  - Roughness ARRB Walking Profiler
  - Rutting Transverse Profile Beam (R&D)
  - Texture NZTA's Stationary Laser Profiler
  - Surface Distress Visual Inspection
- Data Processing/QA



#### New Zealand Roads: Predominantly Chipseal

- The LTPP Program Included:
  - Asphalt Motorways and High volume roads
  - Surface Treatment -
    - Grade3 Large aggregate ≈20mm
    - Grade 6 Small Aggregate ≈ 6mm
    - Grade 3/5 Large Aggregate locked with a small aggregate
- Equipment
  - Able to measure on these road types and not be adversely affected by changes in condition and network features such as grade & curvature
  - Flexible able to cope with change in measurement requirements.
- Sites
  - Permanent marking and setup to ensure repeatable measurements in following years are taken at the same locations





### Roughness - ARRB Walking Profiler



### **Rutting – Transverse Profile Beam**



#### **Texture - Stationary Laser Profilometer**



#### **Visual Condition Inspection**

| Code | Description of Distress              | Code | Description of Distress                      |
|------|--------------------------------------|------|----------------------------------------------|
| A1   | Active Aggregate Loss                | TCN  | Transverse Cracks Narrow                     |
| A2   | Stable Aggregate Loss                | TCW  | Transverse Cracks Wide                       |
| D    | Delamination                         | TCS  | Transverse Cracks Sealed                     |
| M    | Mechanical Damage                    | AGN1 | Alligator Cracks Narrow (In Wheel path)      |
| F1   | Flushing (Some spots)                | AGW1 | Alligator Cracks Wide (In Wheel path)        |
| F2   | Flushing (Clearly Defined Area)      | AGS1 | Alligator Cracks Sealed (In Wheel path)      |
| F3   | Flushing (No Texture)                | AGN2 | Alligator Cracks Narrow (Outside Wheel path) |
| LEN  | Longitudinal Edge Cracks Narrow      | AGW2 | Alligator Cracks Wide (Outside Wheel path)   |
| LEW  | Longitudinal Edge Cracks Wide        | AGS2 | Alligator Cracks Sealed (Outside Wheel path) |
| LES  | Longitudinal Edge Cracks Sealed      | PCN  | Parabolic cracking Narrow                    |
| LWN  | Longitudinal Wheel Cracks Narrow     | PCW  | Parabolic cracking Wide                      |
| LWW  | Longitudinal Wheel Cracks Wide       | PCS  | Parabolic cracking Sealed                    |
| LWS  | Longitudinal Wheel Cracks Sealed     | SP   | Surface Patch (Area)                         |
| LIN  | Longitudinal Irregular Cracks Narrow | StP  | Structural Patch (Area)                      |
| LIW  | Longitudinal Irregular Cracks Wide   | Р    | Pothole (Number, Length, Width, and Depth)   |
| LIS  | Longitudinal Irregular Cracks Sealed | E    | Edge Distress (Length Width and Depth)       |
|      |                                      | S    | Shoving                                      |

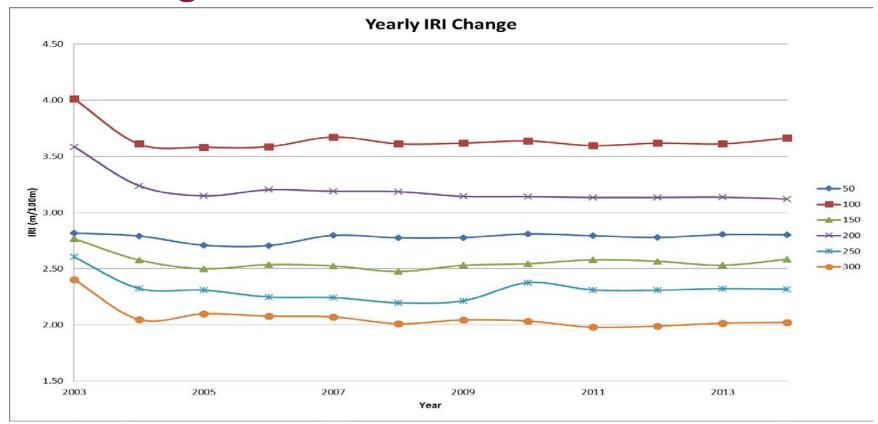
### **Visual Condition Inspection**

| Date      | Sub Sect | Dist St | Dist End | Dist Width | Dist Depth | Distress | Comments |
|-----------|----------|---------|----------|------------|------------|----------|----------|
| 26-Sep-14 | 5        | 7       | 14       |            |            | lwn      | lwp      |
| 26-Sep-14 | 5        | 8       | 11.3     | 400        |            | sp       | edgeline |
| 26-Sep-14 | 5        | 19      | 50       | 500        |            | f2       | rwp      |
| 26-Sep-14 | 5        | 41.7    | 42       | 20         | 10         | m        | btwp     |
| 26-Sep-14 | 6        | 0       | 18       | 600        |            | f2       | rwp      |
| 26-Sep-14 | 6        | 0       | 8        | 1000       |            | f2       | lwp      |
| 26-Sep-14 | 6        | 7.7     | 8        | 300        |            | agn2     | btwp     |
| 26-Sep-14 | 6        | 8       | 9.5      |            |            | lwn      | lwp      |
| 26-Sep-14 | 6        | 8.1     | 10       | 1000       |            | sp       | lwp      |
| 26-Sep-14 | 6        | 9.4     | 9.6      | 100        |            | agn1     | lwp      |

### Calibration and Validation

#### Project Contract defined data collection specifications

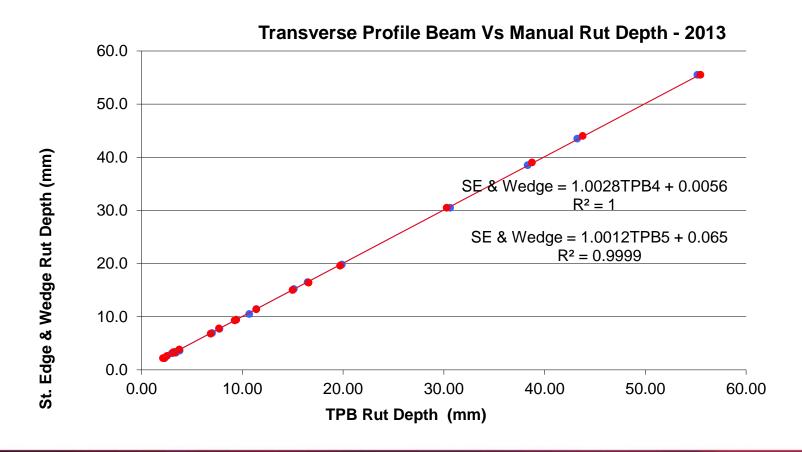
- More stringent procedures were developed to ensure greater data quality.
- Calibrate to an International Standard
- Retain and use data from previous equipment calibration and validation exercise.
- Undertake a detailed validation exercise that demonstrates compliance to defined specs and tests
  - procedures
  - equipment
  - personnel
  - process


#### 100m Roughness Validation Site 1

| Crowther Rd WP020, 024, 073 September 2014 |       |       |       |       |       |       |      |         |        |          |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|------|---------|--------|----------|
| Loc                                        | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Run 6 | Mean | Std Dev | Cf Var | Std Err. |
|                                            | WP020 |       |       |       |       |       |      |         |        |          |
| 100                                        | 3.31  | 3.13  | 3.27  | 3.23  | 3.22  | 3.22  | 3.23 | 0.060   | 0.003  | 0.025    |
| 200                                        | 2.83  | 2.90  | 2.88  | 2.88  | 2.90  | 2.85  | 2.87 | 0.028   | 0.001  | 0.011    |
| 300                                        | 2.15  | 2.20  | 2.15  | 2.07  | 2.25  | 2.10  | 2.15 | 0.065   | 0.003  | 0.027    |
|                                            | WP024 |       |       |       |       |       |      |         |        |          |
| 100                                        | 3.29  | 3.20  | 3.31  | 3.23  | 3.22  | 3.15  | 3.23 | 0.059   | 0.003  | 0.024    |
| 200                                        | 2.82  | 2.95  | 2.90  | 2.87  | 2.87  | 2.88  | 2.88 | 0.043   | 0.002  | 0.017    |
| 300                                        | 2.15  | 2.17  | 2.19  | 2.12  | 2.12  | 2.09  | 2.14 | 0.037   | 0.001  | 0.015    |
|                                            | WP073 |       |       |       |       |       |      |         |        |          |
| 100                                        | 3.16  | 3.25  | 3.22  | 3.20  | 3.14  | 3.41  | 3.23 | 0.097   | 0.007  | 0.039    |
| 200                                        | 2.80  | 2.79  | 2.86  | 2.88  | 2.86  | 2.93  | 2.85 | 0.052   | 0.002  | 0.021    |
| 300                                        | 2.22  | 2.19  | 2.23  | 2.21  | 2.18  | 2.13  | 2.19 | 0.036   | 0.001  | 0.015    |

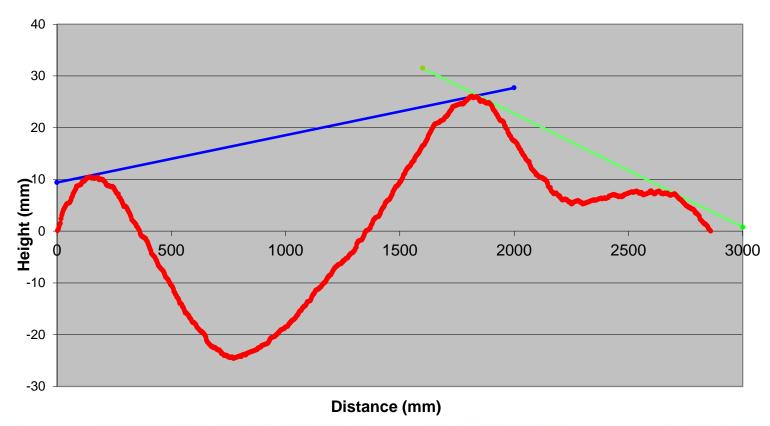
#### 50m Roughness Validation Site 1

|          | Crowthe | 2014 Data |       |          |      |        |        |
|----------|---------|-----------|-------|----------|------|--------|--------|
| Distance | Run 1   | Run 2     | Run 3 | Mean1-3  | Mean | Up/Lmt | Lw/Lmt |
| 50       | 2.87    | 2.69      | 2.80  | 2.79     | 2.80 | 3.22   | 2.38   |
| 100      | 3.59    | 3.66      | 3.63  | 3.63     | 3.66 | 4.21   | 3.11   |
| 150      | 2.65    | 2.63      | 2.69  | 2.66     | 2.59 | 2.98   | 2.20   |
| 200      | 3.17    | 3.15      | 3.16  | 3.16     | 3.15 | 3.62   | 2.67   |
| 250      | 2.20    | 2.51      | 2.44  | 2.38     | 2.30 | 2.64   | 1.95   |
| 300      | 2.09    | 2.00      | 2.01  | 2.03     | 2.00 | 2.30   | 1.70   |
| Distance | Run 4   | Run 5     | Run 6 | Mean 4-6 | Mean | Up/Lmt | Lw/Lmt |
| 50       | 2.76    | 2.79      | 2.77  | 2.77     | 2.80 | 3.22   | 2.38   |
| 100      | 3.65    | 3.62      | 3.77  | 3.68     | 3.66 | 4.21   | 3.11   |
| 150      | 2.66    | 2.68      | 2.71  | 2.68     | 2.59 | 2.98   | 2.20   |
| 200      | 3.18    | 3.15      | 3.10  | 3.14     | 3.15 | 3.62   | 2.67   |
| 250      | 2.29    | 2.43      | 2.29  | 2.34     | 2.30 | 2.64   | 1.95   |
| 300      | 1.98    | 2.07      | 1.99  | 2.01     | 2.00 | 2.30   | 1.70   |

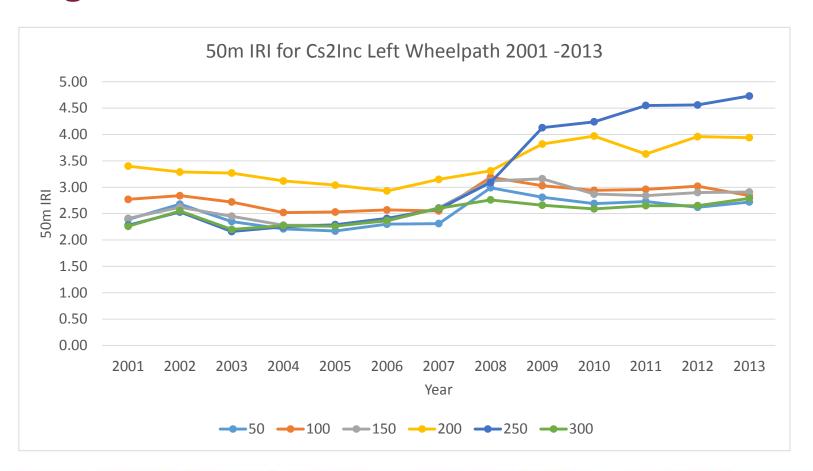

#### 50m Roughness 2003 to 2014



### **Rutting Validation Site 3**


| Moores Valley Rd Site 3 |          |       |         |           |           |      |         |           |
|-------------------------|----------|-------|---------|-----------|-----------|------|---------|-----------|
| Run No.                 | Left Rut | Mean  | STD Dev | Std Error | Right Rut | Mean | STD Dev | Std Error |
| 1                       | 29.95    |       |         |           | 8.67      |      |         |           |
|                         | 29.60    | 29.77 | 0.25    | 0.17      | 8.54      | 8.61 | 0.10    | 0.07      |
| 2                       | 29.83    |       |         |           | 8.64      |      |         |           |
|                         | 29.42    | 29.70 | 0.23    | 0.12      | 8.68      | 8.63 | 0.07    | 0.03      |
| 3                       | 29.88    |       |         |           | 8.56      |      |         |           |
|                         | 29.74    | 29.74 | 0.20    | 0.08      | 8.65      | 8.62 | 0.06    | 0.02      |
| 4                       | 29.86    |       |         |           | 8.64      |      |         |           |
|                         | 29.50    | 29.72 | 0.19    | 0.07      | 8.67      | 8.63 | 0.05    | 0.02      |
| 5                       | 29.88    |       |         |           | 8.65      |      |         |           |
|                         | 29.14    | 29.68 | 0.26    | 0.08      | 8.75      | 8.64 | 0.06    | 0.02      |

#### Straight Edge and Wedge vs TPB

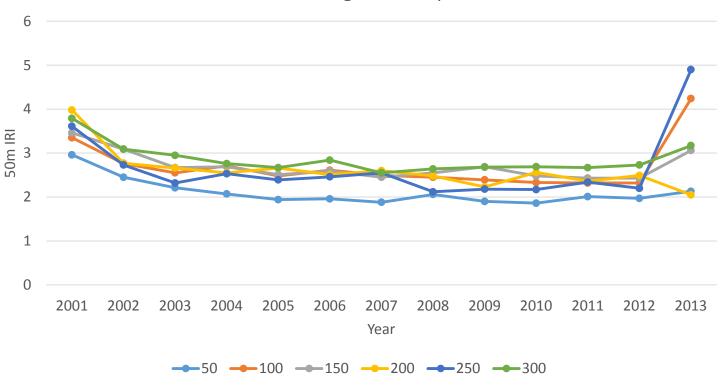



#### **Typical Transverse Profile**

#### **Moores Valley Rd Site 4**

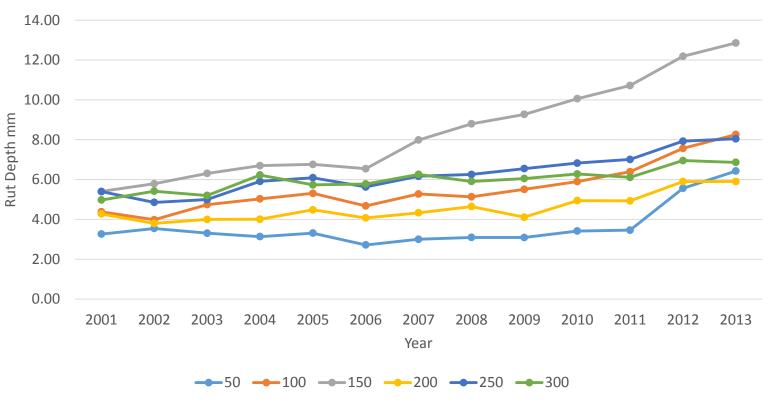


#### Roughness G3 Surface Treatment 2001 to 2013



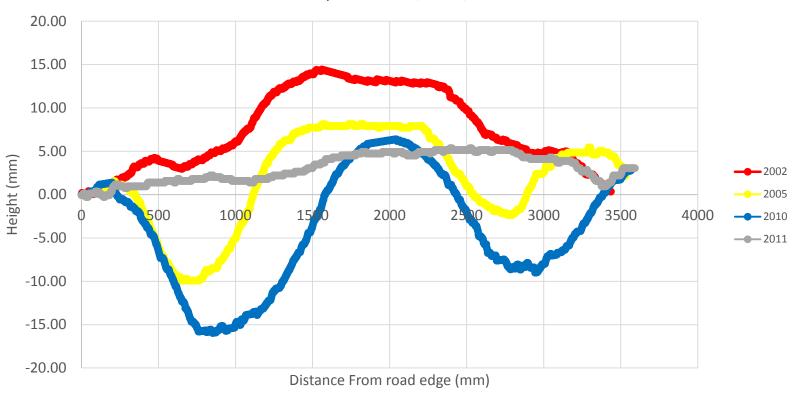

### **Roughness Grade 3 Surface Treatment**



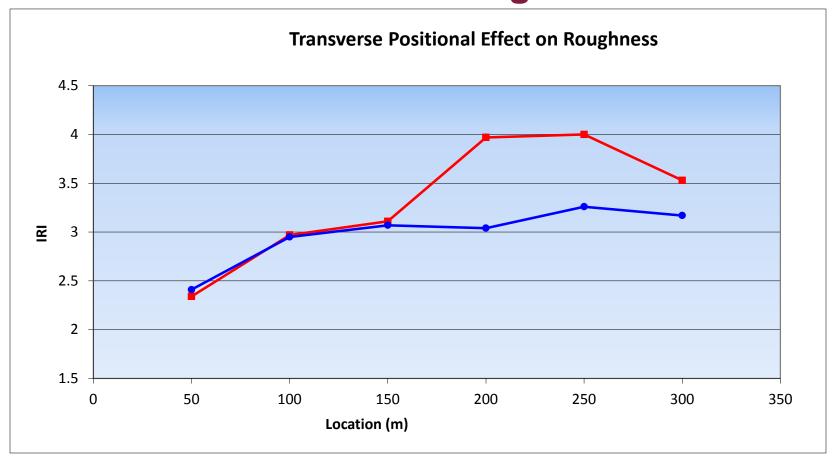

#### **Roughness G3/5 Surface Treatment**






#### **Rutting Development 2001 to 2013**

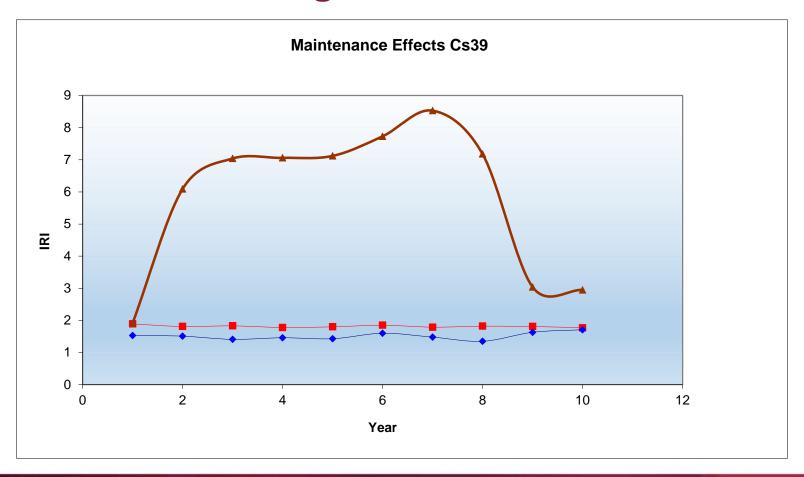





### **Measurement Location - Rutting**






#### **Measurement Location - Roughness**



### **Measurement Location - Wheelpath Separation**

| Wheelpath<br>Separation | No. of Sites | No of Heavy<br>Vehicle Sites |
|-------------------------|--------------|------------------------------|
| 1400                    | 5            | 0                            |
| 1500                    | 25           | 2                            |
| 1600                    | 25           | 4                            |
| 1700                    | 15           | 5                            |
| 1800                    | 8            | 4                            |
| 1900                    | 4            | 4                            |

#### **Maintenance - Roughness**



### Summary

- Site Establishment
- Traffic Management
- Equipment
  - Select suitable Equipment
  - Retain Backup
  - Operate Multiple Equipment- cross checking
- Calibration and Validation
  - Calibrate to an International Standard
  - Develop Validation procedures that test the equipment for all expected conditions
- Data Collection
  - Develop and document robust data collection procedures
  - Follow same procedures each year- photograph distress
- Results
  - Check data Check data as it is collected
  - Data Processing use automated software to minimise human error
  - Quality Control follow well defined QA procedures