

Hemational Conference Unssats Icurpa **Factors Affecting the Performance of Pavement Preservation Treatments**

Beth Visintine, Ph.D., P.E. R. Gary Hicks, Ph.D., P.E. DingXin Cheng, Ph.D., P.E. Gary Elkins, P.E. Jonathan Groeger

International Con

UirginiaTech. Transportation Institute

Federal Highway ministration

Presentation Outline

- Introduction
- Data Gathering
- Sensitivity Analysis
- Economic Analysis

Pavement Preservation

 Represents proactive approach to maintaining existing highways

Why Pavement Preservation?

- Extend pavement's effective service life
- Improve pavement service condition
- Provide a cost efficient approach in general climate and traffic conditions

- Proof that preventive maintenance treatments can perform and are cost effective
- Factors most affecting the performance of preservation treatments
- Guidance to identify roadway candidates for preservation treatment (i.e. when treatments should be applied)
- What treatment should be applied and its expected life extension of the treatment under varying conditions and climates

Project Objectives

- Assess how the uncertainty in the output of a model (such as the performance of a treatment or the costs) can be apportioned to different factors such as:
 - Pavement condition
 - Construction quality
 - Quality of materials
 - Traffic and climate

Literature Review

- Pre-existing pavement condition
- Construction process
- Materials
- Traffic levels
- Climate

Survey of Experts

- Condition of pavement prior to treatment
- Quality of construction
- Quality of materials
- Design of preservation treatment
- Traffic volume
- Climate

Treatment Types

- AC pavements
 - HMA overlay
 - Chip seals
 - Slurry seals
 - Crack sealing

- Concrete pavements
 - Diamond grinding
 - Dowel bar retrofit
 - Crack/joint sealing

Photo: IGGA

Databases

- Support investigation of sensitivity of factors affecting the performance of PP treatments.
- Use of field data considered very important

Viability of Databases

- NCHRP Project 1-48, MEPDG
- 2012 NCHRP Project 14-31, "Developing a Pavement-Maintenance Database"
- LTPP database

Sensitivity Input

- Current databases do not contain adequate information to provide answers relative to the importance of various factors on the resulting performance of preservation treatments.
- Relied on the survey of experts

Sensitivity Analysis

- Identify the expected life of the various treatments
- Develop performance curves
- Risk of failure

Expected Life of Treatment

Treatment Life, Years	Average	Standard Deviation	Lowest	Highest
Thin HMA Overlays (< 1.5")	9	3	4	18
Chip Seals	7	1.9	4	10
Slurry Surfacings	6	1.8	4	12
Crack Sealing	5	2.4	2	12
Diamond Grinding	12	4.3	4	20
Dowel Bar Retrofit	15	3.8	5	20
Joint and Crack Sealing	7	4.1	2	15

Percent Reduction in Life

Treatment Life Reduction Percentage, %		Thin HMA Overlay	Chip Seal	Slurry Surfacings	DBR	Joint and Crack Sealing
Pretreatment	Fair	36%	31%	35%	26%	N/A
Pavement Condition	Poor	64%	62%	62%	N/A	N/A
Materials Selection and Quality	Marginal	36%	40%	38%	30%	40%
	Poor	57%	64%	62%	53%	60%
Construction and Workmanship	Marginal	45%	46%	44%	42%	44%
	Poor	61%	68%	65%	67%	67%
Mix and Structural Design	Marginal	35%	31%	40%	N/A	N/A
	Poor	57%	51%	62%	N/A	N/A
Traffic Level	Medium	22%	26%	23%	11%	11%
	High	45%	48%	44%	32%	27%
Climate During and Immediately After	Marginal	33%	44%	44%	21%	29%
Construction	Poor Oth Internet	50%	66%	65%	38%	53%

Pavement Assets | May 18-21, 2015

Sensitivity Levels

Factor	Thin HMA Overlay	Chip Seal	Slurry Surfacings	DBR	Joint Sealing
Pretreatment Pavement Condition	1	4	3	5	N/A
Materials Selection and Quality	3	3	5	2	2
Construction and Workmanship	2	1	1	1	1
Mix and Structural Design	4	5	4	N/A	N/A
Traffic Level	6	6	6	4	4
Climate During and Immediately After Construction	5	2	2	3	3

Risk of Early Failure

Highest Risk of Failure – AC

- Thin HMA Overlay
 - Existing pavement in poor condition
 - Poor construction practices and workmanship
- Chip Seal, Slurry Surfacings, and Crack Sealing
 - Existing pavements in poor condition
 - Using poor construction practices or materials, or placing it in poor climate

Highest Risk of Failure – PCC

- Diamond Grinding and Joint and Crack Sealing (PCC)
 - Existing pavement in poor condition
 - Poor construction practices and workmanship
- DBR
 - Poor construction practices and workmanship
 - Poor materials selection and quality

Economic Analysis

- RealCost 2.5
 - Comparison of up to six alternatives
 - Up to 24 activities
- Inputs held constant
 - Traffic, project length, and discount rate
- Inputs varied
 - Type, number and cost of treatments
- Deterministic approach

LCC Comparison

Factor	Condition	Thin HMA Overlay	Chip Seal	Slurry Surfacings	DBR	Joint and Crack Sealing
Pretreatment	Fair	45%	39%	46%	16%	N/A
Pavement Condition	Poor	151%	138%	142%	N/A	N/A
Material Selection and	Marginal	45%	58%	55%	19%	53%
Quality	Poor	107%	156%	142%	36%	124%
Construction and	Marginal	66%	73%	67%	26%	65%
Workmanship	Poor	130%	190%	165%	47%	171%
Mix and Structural	iviarginai	43%	39%	59%	N/A	N/A
Design	Poor	107%	92%	142%	N/A	N/A
	Medium	23%	30%	27%	7%	12%
Traffic Level	High	66%	82%	67%	21%	29%
Climate During and	Marginal	41%	67%	67%	12%	29%
Immediately After						
Construction	Poor	83%	167%	165%	25%	94%

6/4/2015

Pavement Assets | May 18-21, 2015

- Determined how the uncertainty in the output of a model can be apportioned to the different factors
- Variation from good conditions can have a dramatic effect on the life of the pavement preservation treatments and associated costs to the agencies

Thank you!