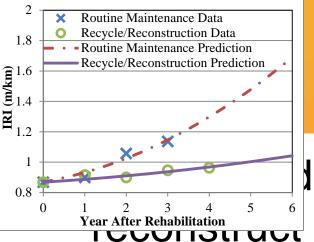
international contellence unssels none **Comprehensive LCC of a Pavement Recycling Project in Virginia**

James Bryce, PhD

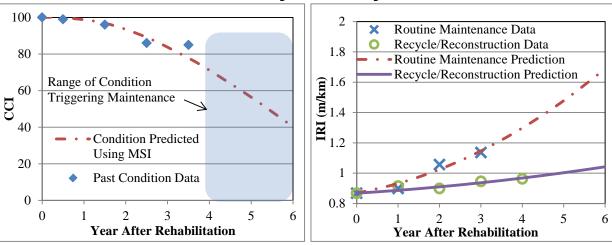
Joao Santos Gerardo Flintsch, PhD, PE Adelino Ferreira, PhD

International Con

WirginiaTech. Transportation Institute



Outline


- Review of the Project
 - Methods Used
 - Results of Comprehensive LCA
- LCC and LCCA
- Analysis of the Project
- Conclusions

I-81 Project

I novel recycling methods to Vear After Rehabilitation I COULSTICUTE a project on I-81

- Apparent structural problems
- Prior to reconstruction, pavement required maintenance every 4-6 years

I-81 Recycling Project

• AADT = 23,000 (28 percent trucks)

• 7.2 lane miles

4-inch New AC	4-inch New AC	6-inch New AC			
5-inch CIR	8-inch CCPR	6-inch CCPR			
Existing AC					
Existing Aggregate	12-inch FDR				
Subgrade	Subgrade				
Left Lane	Right Lane				

Cold In-Place Recycling

Cold Central-Plant Recycling

Full-Depth Reclamation

and the second second

Performance of Project

Comprehensive LCA

- 50 year time horizon
- Included all phases minus EOL
 - Use phase evaluated using Chatti and Zaabar's NCHRP models and MOVES
 - Traffic congestion effects considered using MOVES
 - Impact Assessment using TRACI
- Each Alt had different rehab schedules

Description of Alternatives

- Corrective Maintenance
 - 2 inch mill and OL on a 4 to 6 year basis
 - Limited patching based on VDOT schedule
- Recycling
 - What was implemented
 - Maintenance Schedule based on VDOT guide
- Reconstruction
 - All virgin materials and traditional practices
 - Same maintenance as recycling

Comprehensive LCA

	CC	AC		EU		HH	
Recycling-	(-22%)	(-19%) 20		(-28%)		(-29%)	
based	121,398	886,765		20,305		47,618	
Reconstruct	(-21%)	(-19%) 20		(-28%)		(-28%)	
	123,727	813,273		20,471		48,213	
Corrective Maintenance	173,898	29,1	29,176,659 28,24		5	67,368	
	PS		ARD MR		ARD FF		
Recycling-	(-29%)		× ×	(-40%)		(-31%)	
based	284,244			0.0022727		2,466,662,453	
Reconstruct	(-28%)		(8%)		(-30%)		
	288,991		0.0041290		2,498,445,378		
Corrective Maintenance	400,392		0.0038097		3,564,507,198		

Comprehensive LCC

- LCC links processes with cash flows
 - More detailed than LCCA
 - Splits variable and fixed costs
 - Designed to be used with LCA results

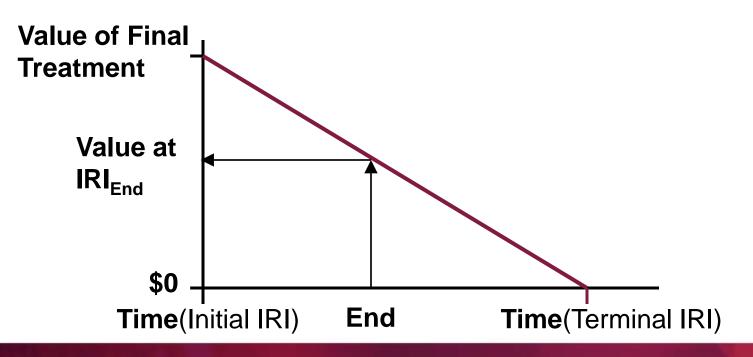
- LCCA can be 'black box'
 - LCC can be more transparent

- Costs were disaggregated as much as possible
 - VDOT data was requested
 - Literature data used where more local data not available
 - Equipment relative value was accounted for
- NPV was calculated
 - 2.3% discount rate per OMB (2013)

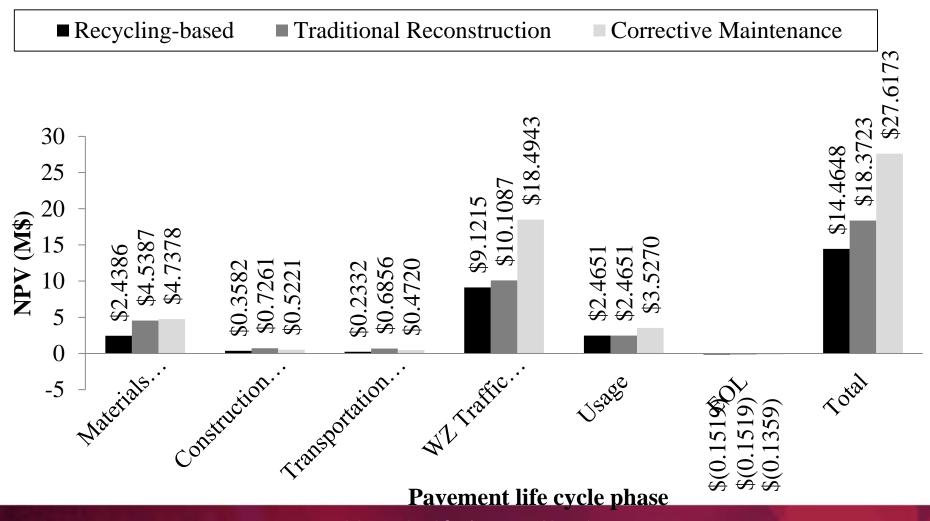
User Costs

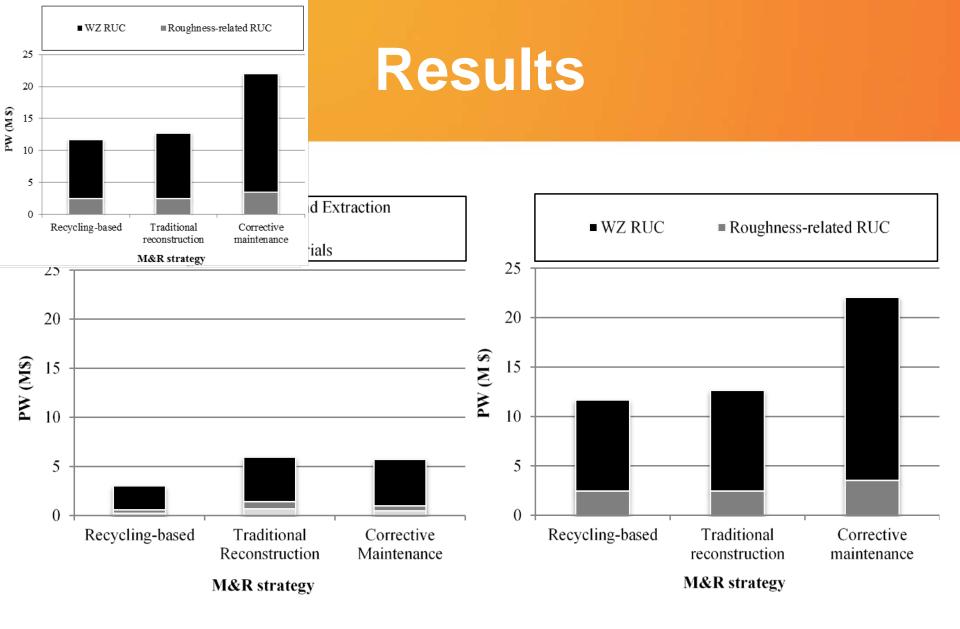
Work Zone

- Costs due to time lost in queueing
- Values from USDOT OST (2003), adjusted accordingly
- VOC were also accounted for


Use Phase

 VOC models: HDM calibrated models by Chatti and Zaabar


End of Life


Residual value based on terminal IRI

- 200 inches/mile as terminal
 - Very poor on VDOT Dashboard

Conclusions

- Recycling based strategy better in LCA and LCC terms
- For each alternative
 - Materials phase and WZ traffic management most expensive
- Linking LCC and LCA guides to better understanding of sustainable management

Acknowledgments

- Portuguese Foundation for Science and Technology under Grant [SFRH/BD/79982/2011], by European Regional Developing Funding [CENTRO-07-0224-FEDER-002004- EMSURE -Energy and Mobility for Sustainable Regions] and by the
- Transportation Pooled Fund TPF-5(268) National Sustainable Pavement Consortium.

Thank You

Sustainable Transport...

9th International Conference on Managing Pavement Assets | May 18-21, 2015