

UVirginiaTech

SSETS (ICMPA9

Douglas Frith, Shelley Stoffels, Dennis Morian, & Neil Mastin

Presentation Outline

- Background
- Data Collection
- Analysis
- Benefits

BACKGROUND

- Began automated data collection in 2012
 - Transition from manual to automated rating
 - Maintained two distress guides
- 19,000 miles of interstate & primary
- Develop quality limits for control of the distress data

- Important that control sites represent a range of representative conditions
 - Variety of distress types
 - Variety of extents
 - Variety of severity levels
- NCDOT was provided with an initial matrix
 - Review historical data to fill the cells
 - Sites within a day's drive of Raleigh

OID	SURFACE TYPE	COUNTY NAME	COUNTY NUMBER	DIVISION	ROUTE	BEG_MP	END_MP	LENGTH (miles)
1	AC	Davidson	29	9	3000008	7.63	8.13	0.5
2	AC	Davidson	29	9	3000008	8.68	9.18	0.5
3	AC	Davidson	29	9	3000008	10.152	10.652	0.5
4	AC	Randolph	76	8	30000022	11.83	13.16	1.33
5	AC	Stokes	85	9	3000008	19.052	19.302	0.25
6	AC	Stokes	85	9	30000066	15.355	15.655	0.3
7	AC	Stokes	85	9	30000066	16.397	16.697	0.3
8	AC	Stokes	85	9	30000066	17.797	18.057	0.26
9	AC	Edgecombe	33	4	30000111	8.23	8.73	0.5
10	AC	Edgecombe	33	4	30000111	11.54	12.04	0.5
11	AC	Edgecombe	33	4	20000258	14.322	14.652	0.33
12	AC	Richmond	77	8	20000001	20.451	20.951	0.5
13	AC	Chatham	19	8	30000751	6.41	6.91	0.5
14	AC	Wake	92	5	30000054	9.573	10.073	0.5

Windshield definitions

	SEVERITY					
DISTRESS TYPE	LIGHT	MODERATE	SEVERE			
Alligator (Small Quantity)	4, 7, 10	2, 3	2, 11			
Alligator (Large Quantity)	1, 5, 9, 12, 14	5, 11, 13, 14				
Transverse Cracking	4,5,6,9,10,11,12, 14	4, 5, 14				
Rutting	6, 13					
Raveling	6, 8, 13					
Bleeding	8		6, 7			
Patching	5, 9					
Oxidation						

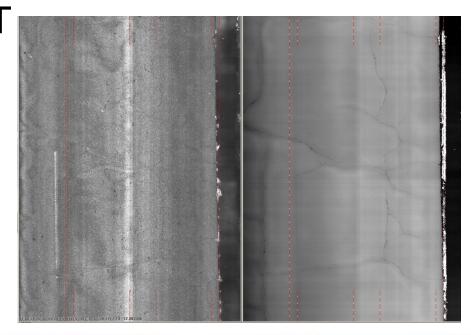
High speed definitions

	SEVERITY					
DISTRESS TYPE	LIGHT	MODERATE	SEVERE			
Transverse	4,5,6, 13,14	4,5,7, 11,12,14	9,10,11			
Longitudinal (Outside of WP)	12					
Longitudinal Lane Joint						
Alligator	1,2,3,4,5,7,9,10,11,12,14	2,3,4,5,9,11,12,13,14	2,11			
Patching (WP)	5					
Patching (NWP)						
Delamination						
Bleeding	8		6,7			
Rutting	6,12,13					
Raveling	6,8					
Transverse Reflective	12	12				
Longitudinal Reflective	12					

DATA COLLECTION

9th International Conference on Managing Pavement Assets | May 18-21, 2015

Field Reviews

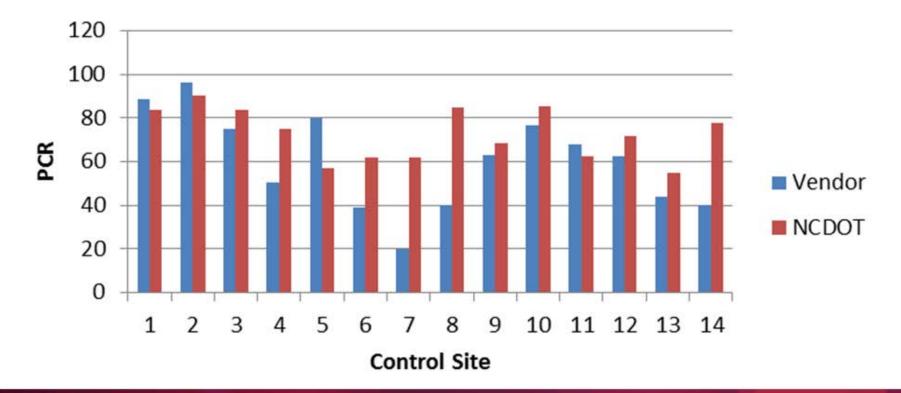

- Data collection team of NCDOT and contractor experienced distress raters
- Historical windshield review
 - Drive at low rate of speed
 - Document ride quality (low, moderate, high)
 - Identify distress in bins (combined severity, estimate quantity)
 - Stop and reviewed ratings, but did not change windshield rating

Field Reviews

- Vendor collected high speed data
 - Data collected over 2 month period
- Data includes:
 - Roadway geometrics
 - Ride quality (IRI)
 - Rutting
 - 3-D pavement images
 - Semi-automated distress ratings

Rater Pool

- Rater pool was used to independently evaluate each control site from images
 - 4 raters from the QA contractor
 - 3 raters from NCDOT
 - 1 vendor rating

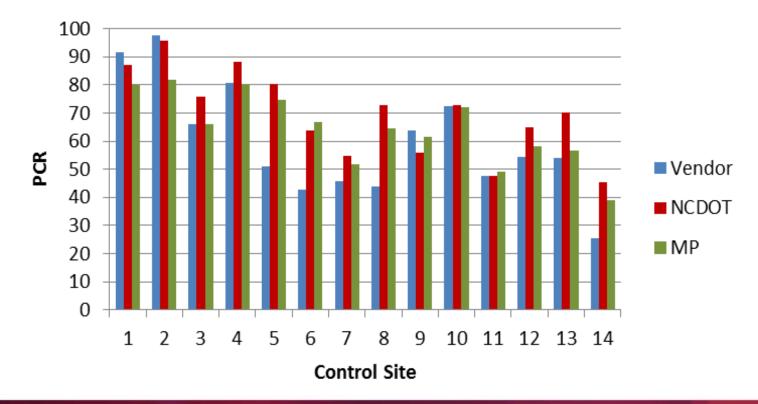


ANALYSIS

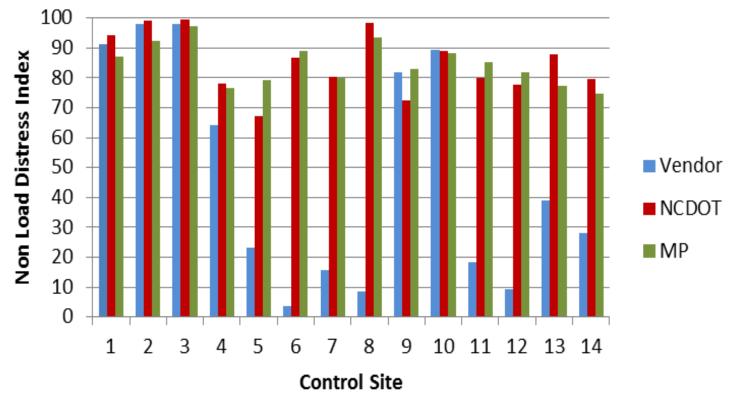
6/4/2015

Comparison to Field Ratings

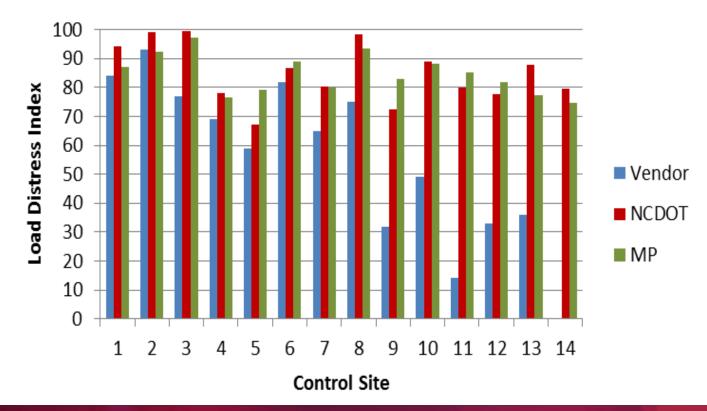
 Vendor reported more distress for 9 out of 14 control sites based on PCR


Comparison to Field Ratings

- General differences
 - Vendor identified larger % of alligator cracking at higher severities
 - Vendor reported more moderate ride quality, compared to low from windshield
 - Vendor had severe patching on site 13 compared to no patching from field team
 - Field raters generally reported the transverse cracking in a lower bin


Comparison to Field Ratings

- The distress identified by the vendor was generally more complete than the windshield surveys
- This comparison did identify some deficiencies in the automated rating process
 - Identification of bleeding
 - Transverse crack algorithm

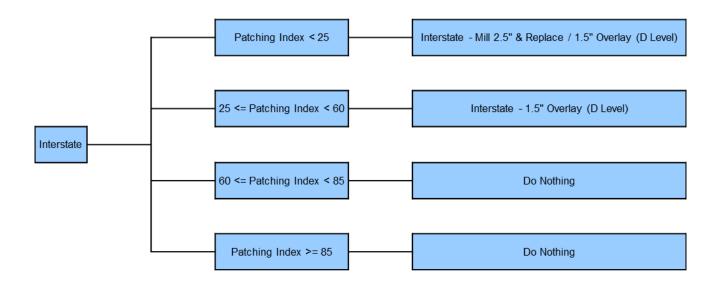

 Vendor reported more distress for 8 out of 14 control sites based on PCR

 Based upon VDOT Non-Load Related Distress Index (NDR)

 Based upon VDOT Load Related Distress Index (LDR)

General differences

- Rater pool generally identified higher quantities of low severity alligator cracking but lower quantities of longitudinal cracking
- Rater pool identified more transverse cracking on most sites
- Vendor generally rated higher quantities of bleeding


Recommendations from Comparisons

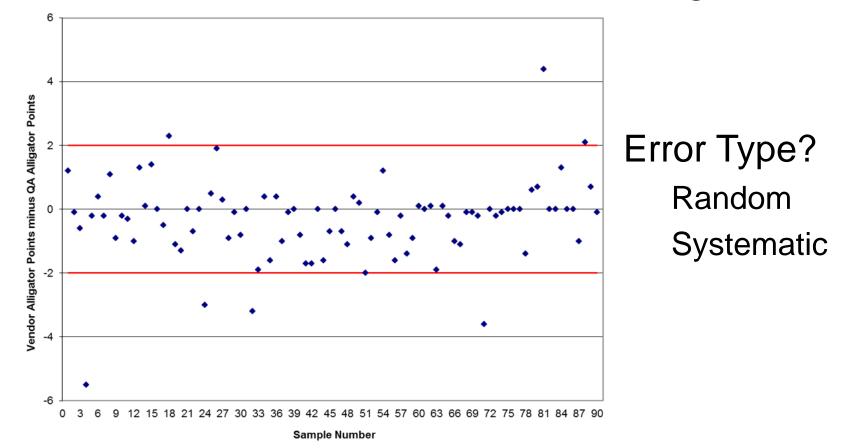
- Redefine transverse cracking
- Review ride quality rating limits
- Review the rating/reporting of patching
- Differences in distress identification and classification existed (low alligator cracking, longitudinal cracking, patching and bleeding)
- Detailed distress rater training was recommended

What to Control & How

 Review the current NCDOT PMS decision trees for treatment to identify significant distress

PATCHING TREE - INTERSTATE

What to Control & How


- Considered options
 - Individual distress
 - Index values (PCR, LDR, NDR)
- Statistical analysis based on ASTM d2s methodology (represents reproducibility of the process)

Determination of QA Limits

- Applied d2s to the 14 control sites (rater pool)
- The difference in PCR values between the vendors reported data and QA determined data should not exceed the absolute value of 15
- The difference in the total quantity of alligator cracking data reported (based upon the windshield reporting and summary method) should not exceed a value of 2.0

Application of QA Limits

• When outside of the limits – investigate

9th International Conference on Managing Pavement Assets | May 18-21, 2015

BENEFITS

9th International Conference on Managing Pavement Assets | May 18-21, 2015

Benefits of Control Sites

- Early identification of misinterpretation of distress definitions
- Confirmation of computer algorithms
- Acceptance of summarization and reporting methods
- Minimal time & effort compared to inaccurate data reporting

Recommendations

- Select control sections with a wide range of distresses (type, severity, extent)
- The larger the rater pool the better
- Vendor must report data as for production ratings
- Vendor should repeat control site efforts annually

THANK YOU