Incorporating Traffic Speed Deflection Data in PMS Decision Making for Flexible Pavements

International Conferen

UrginiaTech. Transportation Institute

Pederal Highway Administration

Senthilmurugan Thyagarajan Nadarajah Sivaneswaran Katherine Petros

ntemational contenent ASSETS (curpa)

Turner-Fairbank Highway Research Center, FHWA, HRDI-20 McLean, VA

- Evaluate and incorporate both structural and functional condition in PMS analysis
- Coupled mechanistic and LCC analyses in optimizing treatment sequence.
- Remaining Service Interval (RSI) to report time remaining until a defined construction type.

Evaluate and Incorporate Structural and Functional Condition in PMS Analysis

Network Level Pavement Evaluation

Need both functional and structural condition

Network Level Pavement Evaluation

- Functional threshold is a limit for LOS
 - beyond which the pavement should be subjected to some form of treatment
- Structural condition is required to identify most cost effective treatment
- Surface condition alone is inadequate to assess structural health of the pavement.

Limitation of Surface Measurements

Most PMS use surface cracking as a surrogate for structural condition.

Limitations:

- Most preservation treatments correct surface cracks but not bottom-up fatigue cracking, instead concealing them, while the bottom-initiated cracks continue to develop
- The prevalence of top-down cracking in thicker pavements also makes it difficult to distinguish bottom-up fatigue cracking

Structural Evaluation at Network Level

- Incorporate network level deflection testing to collect
 - Current structural condition
 - Rate of deterioration.
- Utilize Traffic Speed Deflection Devices (TSDD)
 - Applied Research Associate's Rolling Wheel Deflectometer (RWD)
 - Greenwood Engineering's Traffic Speed Deflectometer (TSD)
- Accuracy and Precision of TSDD measurements found to be acceptable for network level application - FHWA research project

Structural Condition from TSDD measurements

- Tensile strains at bottom of HMA or fatigue strains are indicators of fatigue cracking potential
- Curvature indices from TSDD measurements are found to be good predictors of fatigue strains while effectively isolating the effect of seasonal and spatial variation in unbound layers.
 - Computed as difference or ratio between TSDD measurements at two or more lateral distances.

Example: Surface Curvature Index, $SCI = D_0 - D_{12}$

Thyagarajan, S. et. al., 8th ICMPA, Chile, 2011.

Relation between TSDD Measurement and Fatigue Strain

FHWA Project "Pavement Structural Evaluation at the Network Level" Status - Completed.

Best Indices Relating Fatigue Strain		R ² (3D-Move Analysis)	R ² (Measured Values)
Surface Curvature Index, SCI= D ₀ -D _r	SCI ₁₂	0.95	0.86
	SCI ₁₈	0.93	0.87
Radius of Curvature, $R=r^{2}(2D_{0}(1-D_{r}/D_{0}))$	R1 ₁₂	0.95	0.86
	R1 ₁₈	0.93	0.87
Deflection Slope Index, DSI _{4-r} = D ₄ - Dr	DSI ₄₋₈	0.93	0.83
	DSI ₄₋₁₂	0.94	0.85
	DSI ₄₋₁₈	0.91	0.86

Greenwood Engineering TSD

Traffic Speed Deflectometer (TSD)

- Multiple measurement points
- Curvature indices can be computed

TSDD Application: Estimation of Remaining Structural Capacity

 $SCI = D_0 - D_{12}$

SCI computed from TSDD measurement can be used to estimate the remaining ESAL's capacity

TSDD Application: Tracking Fatigue Performance

Pavement section

Layer No	Material	Thickness, inch	Modulus, psi
1	НМА	8	612,800
2	Base, AB-Class 2	10	43,500
3	Subgrade, CL	-	10,200

CalME software was used

- Accounts for progressive deterioration of the pavement structure over the design period
- Can also consider sequence of treatments during the design period.

TSDD Application: Tracking Fatigue Performance

- SCI can be an effective leading indicator of structural performance and are reasonably well related to fatigue strain
 - predict future performance even before any cracks are visible

TSDD Application: Tracking Fatigue Performance

COUPLED MECHANISTIC AND LCC ANALYSES

Coupled Mechanistic and LCC Analyses

Objective is to maintain pavement at or above acceptable LOS to user at minimum practical cost over the lifecycle of asset

Coupled Mechanistic and LCC Analyses

Coupled Mechanistic and LCC Analyses

- Mechanistic analysis tools can
 - Incorporate a range of future treatments
 - Determine structural life extension at a given condition for a selected treatment
 - Account for delayed treatment
- LCC Analysis
 - Compare economic merits of competing design alternatives
- Treatment selection and its performance is a function of the pavement condition at the time of application.

Optimum Treatment with LCC Analysis

Overlay Treatment	Cracking ft/sq.ft	Life Extension, year	Total Life, year	Treatment Cost, million USD	Total NPV, million USD	EUAC, million USD
1.2inch @ 17 year	0.15	10.0	27.0	1.0	7.21	0.442
1.2inch @ 12 year	0.01	17.5	29.5	1.0	7.33	0.427
1.2inch @ 20 year	0.59	2.5	22.5	1.0	7.13	0.488
3.0 inch @ 20 year	0.59	12.0	32.0	2.5	7.84	0.439

9th International Conference on Managing

Pavement Assets | May 18-21, 2015

Evaluation of Sequence of Treatments

Fatigue strain can be a continuous structural indicator even after successive treatments.

REMAINING SERVICE INTERVAL

Remaining Service Interval (RSI)

- Remaining Service Life (RSL) is a commonly used measure to report timing of future needs
- Several treatment options are possible and planned
 - Difficult to report using one RSL value
 - RSL value is often misinterpreted
- Remaining Service Interval (RSI), defined as the time remaining until a defined construction treatment

Results Presented using RSI Terminology - Example

Results Presented using RSI Terminology

Pavement	RSI	RSI	RSI
Section ID	Preservation,	Rehabilitation,	Reconstruction,
	year	year	year
US1	4,14,18	10	24
•••			

Companion Presentation - *Pavement Remaining Service Interval: A Logical Replacement to RSL Concept,* N. Sivaneswaran et al., Section No. 17 Preservation at 3:30pm

- After a new treatment is applied, surface condition measures, such as cracking, becomes inadequate structural indicator of the pavement system as a whole
- Deflection indices derived from TSDD measurements are effective leading indicators of structural performance for in-service pavements and are reasonably well related to fatigue strain.
- Fatigue strains computed from TSDD measurements can be used to compute
 - Remaining structural capacity
 - Track the structural deterioration over time includes preservation actions that often slow down future deterioration.

Summary (cont..)

- Periodic TSDD measurements over pavement service life can assess differences in pavement structural performance arising from
 - As-designed versus as-constructed
 - Assumed versus actual traffic, and climatic variations
 - Future treatments can be modified as necessary.
- Coupled mechanistic and LCC analysis can identify the cost effective treatment that will maintain the pavement at or above minimum LOS.
- Use of Remaining Service Interval terminology to report the time until a defined construction treatment can reduce ambiguity.

Challenges / Issues

- Mechanistic analysis should able to include effect of preservation activities on pavement performance.
- TSDD measurements are sensitive to climatic conditions at time of testing and methods to adjust them to a "standard" condition are critical.

THANK YOU