A Fair Division Approach to Performance-based Cross-Asset Resource Allocation

internati

WirginiaTech. Transportation Institute

Juan Diego Porras-Alvarado Zhe Han Zhanmin Zhang

nal conference on ISS = IS (ICMPAS)

THE UNIVERSITY OF TEXAS AT AUSTIN CENTER FOR TRANSPORTATION RESEARCH

Outline

- Background
- Problem
- Concepts
 - Equity, Fair Division approach
- Methodology
- Case Study and Results
- Conclusions

- Allocating resources to finance transportation projects has been a major concern in recent years
- Increasing levels of transportation demand with limited capacity and constrained resources have forced transportation agencies to do more with less
- According to ASCE \$220 billion is needed annually to manage congestion and preserve infrastructure (2010-2040)

Why resource allocation?

- Direct application of TAM principles
- Incorporate multiple conflicting objectives
 - Have challenged decision makers to identify resource allocation strategies that optimize not only an individual asset group but the system as a whole
- Various methodologies have been implemented
 - The methodology, rationale, and analytic support vary significantly in practice

Problem

- Decisions on how to allocate resource
 across various asset
 groups involve some
 trade-off
- Absence of an organized process for cross-asset resource allocation

Problem

 Resource Allocation for single asset class, "silo" approach

"Most transportation funding comes with strings attached and program managers are naturally reluctant to invest in other programs or agencies, given needs typically outstrip available resources"

> Source: NCHRP 664: Measuring Transportation Network Performance

Problem

Efficiency vs Equity

- Optimization schemes provide theoretical solutions, may not be perceived as fair
- Combination could yield more defensible funding allocation mechanisms

- Distribution of benefits and whether the distribution is considered appropriate
- Equity in transportation funding allocation
 - With regard to rate of return
 - With regard to performance
 - With regard to need
- Fair Division approach

Fair Division Approach

- New and active are within management science
 - Introduced by Brams and Taylor
- Divide a set of goods S into N shares using a Fair Division scheme
- Various methodologies for divisible, indivisible and mixed goods

Fair Division Approach

• The concept of utility function is typically used to allocating resources fairly among multiple programs

$$Utility = \frac{Allocated Funds}{Needs}$$

$$U_i = \frac{F_i}{N_i}$$

where,

- i = the *i*th player (or program) competing for resource
- U_i = utility value of the *i*th player (or program)
- F_i = funding received by the *i*th player (or program)
- N_i = resource needed by the *i*th player (or program)

Fair Division Approach

- Social Welfare and Collective Utility Functions (CUF)
 - Utility is a measure of the relative satisfaction only, rather than an indication of the fairness of a potential allocation
 - Some of the most important CUFs are utilitarian, egalitarian, elitist, and Nash

Example:

CUFs	Features	Formulation
Utilitarian	Objective is to maximize the sum of individual utilities	$SW_{util}(u) = \mathbf{F} = \arg\max_{\mathbf{F}} \sum_{i \in I} U_i$

Objective

 Develop a methodological framework for performance-based cross-asset resource allocation using the fair division method, aiming at providing new alternatives for transportation agencies and creating a more defensible resource allocation mechanism

- Identify Goals and Objectives
 - Transportation agencies need to clearly identify goals and objectives
 - Strategic planning: agency goals, objectives and allocation philosophy
 - Define asset classes

System Condition

- Condition of asset groups.
 - Performance measures.
 - Performance prediction models.
- Performance-funding relationships.
 - Measure the effects of funding levels on overall condition scores for each asset group.

Performance=A·(allocated funds)^B

Allocation Protocol

- Define time horizon
- Use CUFs (set of rules) to allocate resources
- Measure allocation fairness:
 - Total utility
 - Total envy

• Compute the following parameters for each of the CFUs:

Total UtilityEnvy
$$\sum_{i=1}^{N} U_i = \frac{F_i}{N_i}$$
 $\epsilon_{ij} = \begin{cases} |U_i - U_j|, & if(U_i - U_j) > 0 \\ 0, & otherwise \end{cases}$
$$\sum_{i=1}^{N} \epsilon_{ij} = E$$

where,

- i = the *i*th player in the competition for resource;
- U_i = utility value of the *i*th player;
- F_i = funding received by the *i*th player;
- N_i = resource needed by the *i*th players;
- ϵ_{ij} = envy experienced by *i* from *j*;
- E = the total allocation envy.

Allocation Protocol

- Define time horizon
- Use CUFs (set of rules) to allocate resources
- Measure allocation fairness:
 - Total utility
 - Total envy
- Determine the predicted pavement performance for each asset group

Trade-off analysis

Fairness: Envy

Evaluate various funding alternatives

Optimality:

Total Utility & Performance

Case Study

• Time horizon:

3 years

• Available funds:

 75 percent of total estimated needs

Fair Division approach

 Envy and utility parameters

Parameter	Pavements	Bridges		
Condition Measurement	Condition Score (CS)	Sufficiency Rating (SR)		
Database	PMIS	PonTex		
Average CS 2012 ¹	90.14	-		
Average SR 2012 ²	-	90.00		
Estimated Needs (\$million) ^{2,3}	-	-		
2013	83	28		
2014	139	33		
2015	139	35		
Performance-Funding ⁴	-	-		
2013	A = 46.55 ; B = 0.15	A = 56.63; B= 0.15		
2014	A = 19.81 ; B = 0.31	A = 56.63; B= 0.15		
2015	A = 19.81; B = 0.31	A = 56.63; B= 0.15		

¹ Information from TxDOT Pavement Management Information System (PMIS) database

² Information from TxDOT PonTex database

³ Performance Analysis Tools for Highway Pavement (PATH-P) (Online Source 2014)

Results

Results

9th International Conference on Managing

Results

Parameter	Year	Utilitarian		Egalitarian		Elitists		Nash	
		Pav	Brid	Pav	Brid	Pav	Brid	Pav	Brid
Allocated Funds (\$million)	2013	55	28	62	21	83	0	55	28
	2014	96	33	104	25	129	0	96	33
	2015	96	35	104	26	131	0	96	35
	Total	247	96	271	72	343	0	247	96
Performance	2013	87.69	90.00	85.30	87.78	91.25	78.41	81.91	90.00
	2014	84.55	90.95	81.89	82.51	89.45	62.73	75.69	90.95
	2015	82.98	91.52	76.98	74.26	87.63	56.45	73.21	91.52
Utility	2013	0.666	1.000	0.750	0.750	1.000	0.001	0.666	1.000
	2014	0.691	1.000	0.750	0.750	0.928	0.000	0.691	1.000
	2015	0.687	1.000	0.750	0.750	0.939	0.000	0.687	1.000
	Total	2.043	3.000	2.250	2.250	2.867	0.001	2.043	3.000
	Sum	5.0)43	4.500		2.868		5.043	
Envy	2013	0.334		0.000		0.991		0.334	
	2014	0.3	810	0.000		0.928		0.310	
	2015	0.3	312	0.000		0.939		0.312	
	Total	0.9	956	0.000		2.858		0.956	

Conclusions

- Resource allocation across assets as a significant gap
- Methodologies, such as fair division, can serve as a viable alternative to existing allocation methods
- A combination of efficiency and equity have the potential to yield a more defensible funding allocation mechanism

Thank you !

Contact Information:

Juan D. Porras-Alvarado, juandiegoporras@utexas.eduZhe Han,hanzhe@utexas.eduZhanmin Zhang,z.zhang@mail.utexas.edu