ntemational contellence ussets lickness The Use of GPS-Based **Distress Mapping to Improve Pavement Management**

UrginiaTech. Transportation Institute

Peter-Paul Dzwilewski, P.E. Genevieve Long, P.E., LEED AP Monty Wade, P.E.

CELEBRATING 20 YEARS OF PROVIDING PAVEMENT ENGINEERING SOLUTIONS

Introduction

- <u>Goal</u>: Enhancement of long-term pavement management practices
- <u>Method</u>: Distress mapping using GPSreferenced tablets

 Presented here are examples from recent surveys of portland cement concrete (PCC) pavements

- Additional mapping required prior to surveying
- A reference grade GPS unit tracks the location
- Distress type, severity, quantity are recorded like traditional PCI survey
 - Includes location within a slab
 - Also represents the physical characteristics of each distress

Distress Mapping Legend

LOW MED HIGH DISTRESS DESCRIPTION

<u>~</u> <u>~</u>	61	BLOWUP
	62	CORNER BREAK
	63	CRACK - L <u>ONG</u> ITUDINAL, TRANSVERSE & DIAGONAL
	66/67	PATCHING
	68	POPOUTS
	69	PUMPING

SCALING

70

Distress Mapping Legend (cont.)

LOW MED HIGH DISTRESS DESCRIPTION

- 71 SETTLEMENT
 - 72 SHATTERED SLAB
 - 73 SHRINKAGE CRACKS
 - 74 SPALLING JOINT
 - 75 SPALLING CORNER

76 ASR

Distress Mapping Benefits

- Distress pattern identification
- Quality control during survey is substantially easier
- Section re-segmentation after survey
- Track distresses and repairs over time
- Determine localized maintenance repair quantities

Distress Mapping Benefits (cont.)

- Locate repairs within section
- Evaluate impact of repairs
- Choose appropriate rehabilitation methods
- Apply identified deficiencies to future construction projects

DISTRESS PATTERN IDENTIFICATION

Case Study 1 Overview

- Pavement overloaded in late fall
- Distresses mapped soon after overloading
- Pavement re-mapped 6 months later
 - Significant freeze-thaw and daily temperature cycling between inspections
- Would distresses from overloading propagate between inspections?

Distress Maps

Case Study 1 Benefits

- Possible to see change in general condition and specific distresses
- Track progression of distresses
- Illustrate relationships between distresses within and across slabs
- Depicts deterioration versus stabilization of pavement over time

CHOOSING APPROPRIATE REHABILITATION METHODS

Case Study 2 Overview

- Distress mapping allows for:
 - Localization of maintenance needs
 - Improved accuracy of cost estimates
 - Tracking the effectiveness of repairs
 - Greater insight for selecting the proper rehabilitation method

Repair Options

- Weigh rehabilitation and reconstruction options for best combination of:
 - Future pavement condition
 - Cost
 - Operational requirements

Slab Replacement Alternatives

- Create multiple repair maps with varying quantities of slab replacements
- Repair maps depict slabs replaced
- PCI increase calculated for each map
- Repair maps and PCI increase weighed against the estimated costs

Examples of Slab Replacement Differences

- Two sections in same network with:
 - Same PCI (58)
 - Same age
 - Same cross section (11-inch PCC)
 - Similar traffic patterns

Section A

Section B

Case Study 2 Summary

- Slab replacement recommendations and resulting PCIs differ
 - 18% of slabs replaced and 21-point PCI increase
 - 10% of slabs replaced and 10-point PCI increase

LOCALIZED MAINTENANCE REPAIR QUANTITIES

Case Study 3 Overview

- Localized repair needs determined during pavement management projects
- Repair quantities and costs calculated using traditional PCI survey methods
- Distress mapping improves:
 - Accuracy of calculated repair quantities for localized maintenance needs
 - Identification of specific locations where repairs are needed

Maintenance and Repair Quantities from Traditional PCI

- Only provides number of affected slabs of each distress/severity combination for a sample unit
- Only one distress of each type at highest severity per slab recorded
- Maintenance quantities computed via conversion factors
- May or may not be an appropriate repair quantity depending on specific pavement conditions

Maintenance and Repair Quantities from Distress Mapping

- Customized conversion factors used to calculate repair quantities
- Conversion factors adjusted and are based on actual distress size and pattern
- If repairs are mapped, no conversion factors are needed

Repair Quantity Example I

Distress	Severity	PAVER™ Repairs	Distress Map Repairs	Units	Difference (%)
Corner	М	41	58.7	ft²	-30.2%
Joint	М	19.4	50.6	ft ²	-62.5%
Spall	Н	5.4	7.5	ft ²	-24.9%
Large	М	293	1,477	ft ²	-80.2%
Patch	Н	1,465	7,385	ft ²	-80.2%
Linear	М	683	668	ft	2.3%
Crack	Н	15.1	6.2	ft	137.6%
Small	М	5.4	4.3	ft ²	39.5%
Patch	Н	3.2	4.3	ft ²	-41.0%

Repair Quantity Example II

Distress	Severity	PAVER™ Repairs	Distress Map Repairs	Units	Difference (%)
Corner	М	80.7	69.9	ft ²	15.4%
Break					
Joint	М	80.7	107.6	ft ²	-25.0%
Spall					
Large	М	1,495	175	ft ²	752.1%
Patch	Н	197	37.7	ft ²	422.9%
Linear	М	288.4	111.2	ft	159.3%
Crack					
Small	М	73.2	67.8	ft ²	7.9%
Patch	Н	24.8	9.7	ft ²	155.6%

Case Study 3 Summary

- Repair quantities and costs can impact localized maintenance planning
- Recognition of the actual repair quantities allow for proper allocation of funding across the network

APPLYING IDENTIFED DEFICIENCIES TO FUTURE CONSTRUCTION PROJECTS

Case Study 4 Overview

- Factors impacting pavement condition:
 - Pavement structure/design
 - Climate
 - Traffic
 - Construction techniques
 - Materials
- Using distress mapping, it is possible to consider these factors, along with actual distresses, to improve future projects

Possible Improvements

- Existing distresses can assist in identifying the need to modify:
 - Design practices
 - Construction techniques
 - Repair methods

Taxiway Rehabilitated

- Parallel taxiway recently rehabilitated
 - Used by wide-body aircraft
- Cross section and slab size vary
- Section 1, PCI = 98
- Section 2, PCI = 95
- Section 3, PCI = 52
 - 85% of distresses are load-related

Taxiway Distress Map

Cross Sections

Wheel Loading

Keel slabs 12.5 feet wide

Outer slabs 25 feet wide

9th International Conference on Managing Pavement Assets | May 18-21, 2015

Case Study 4 Conclusions

- Theorized that the top layer of PCC in Section 3 did not bond properly
 - Acts as if independent rather than monolithic
 - Top layer not able to withstand wide-body aircraft loading
- Cross section and paving practices
 - Additional analysis needed for Section 3
 - Section 1 and 2 designs have performed well

CONCLUSIONS

Distress Mapping Considerations

- Slight increase in time to evaluate each sample unit
- 100% sample coverage recommended for distress mapping
- Benefits include a more efficient and robust pavement management program

Distress Mapping Benefits

- Analyze distress patterns
- Identify specific repair locations
- Track performance over time
- Determine accurate maintenance and repair quantities
- Identify issues in design, construction, or repair methods

International Con

WirginiaTech. Transportation Institute

Federal Highway Administration

Peter-Paul Dzwilewski, P.E. 217-398-3977

international contelleuro ussars (curpas,

Thank You!

pdzwilewski@appliedpavement.com

