International Conference un SSETS (ICMPAL **Network Level Structural Evaluation With Rolling** Wheel Deflectometer

WirginiaTech. Transportation Institute

Paul W. Wilke, P.E. Applied Research Associates, Inc.

Presentation Outline

- Structural Data for Network Level Pavement
 Management
- Methods of Pavement Structural Evaluation
- PennDOT- Case Study-3 Methods of Evaluation
 - Falling Weight Deflectometer
 - Rolling Wheel Deflectometer
 - Algorithm Based on Pavement Composition & Age
- Recommendations for Network Level Structural Evaluation

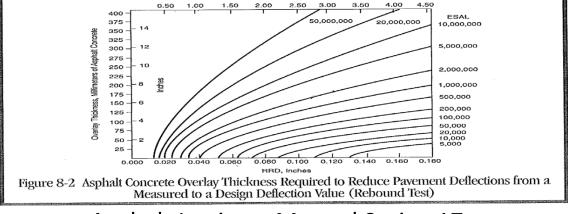
Pavement Management Decision Making

- Goal- identify maintenance & rehab treatments, priorities & budgets
- Input- pavement surface condition, pavement history, geometric measurements (rut, profile)
- Pavement strength useful- often not available

Traditional Project Level Structural Evaluation

Benkelman Beam Testing

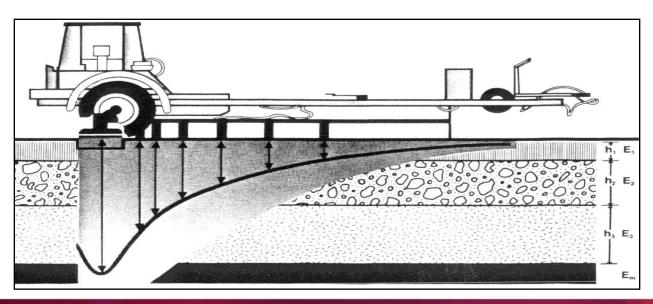
Falling Weight Deflectometer Testing



9th International Conference on Managing Pavement Assets | May 18-21, 2015

Benkelman Beam

- Beam deflection under truck load measured by dial gage
- Empirical correlations developed to determine overlay thickness required
 - Based on deflection & projected traffic loading



RRD, mm

Asphalt Institute Manual Series-17

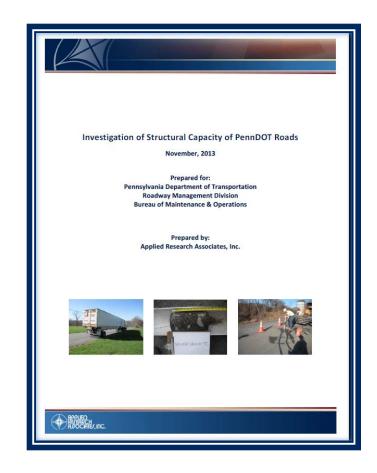
Falling Weight Deflectometer (FWD) Testing

- Weight dropped on load plate
- Deflection measured at series of sensors
- Model developed to determine strength of each layer (so that predicted deflections = actual)

Rolling Wheel Deflectometer

- FWD concept applied to tractor trailer
- Continuous deflection measured by laser (under 8,164 kg single axle)

Reference beam and forward lasers


Laser between dual tires

How Can The RWD Be Used?

- Applications
 - Network-level evaluation (PMS)
 - Pre-screener for focusing project-level efforts (evaluation/design)
- Limitations
 - Currently, maximum deflection only
 - Lack of "deflection basin" limits analysis
 - Accuracy is suitable for network-level analysis, but not detailed engineering analysis

PennDOT Study - Compared 3 Methods of Structural Evaluation

- RWD testing of 463 kilometers
- FWD testing & pavement coring for 16 test segments
- Compared estimates of "structural number" based on RWD, FWD & RMS estimates

Structural Capacity

- Commonly expressed in terms of:
 - Structural number
 - Remaining life
- Study used both parameters

Review of Structural Number & Remaining Life Concepts

- SN used in 1993 AASHTO Pavement Design to quantify pavement strength required to support design traffic
- Select pavement layers to achieve required SN

AC Surface AC Base Subbase

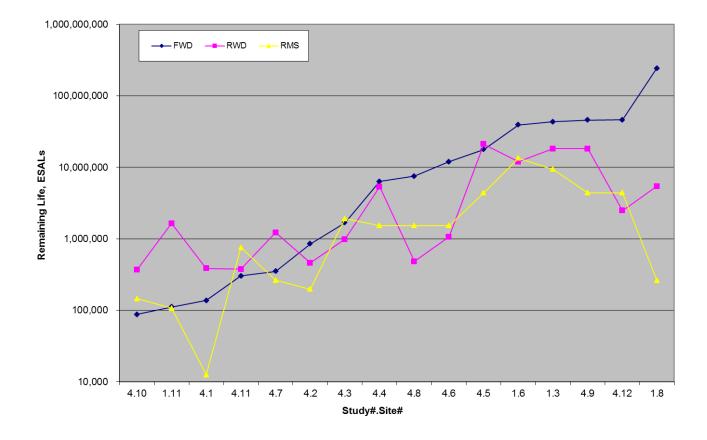
- SN = $a_1 D_1 + a_2 D_2 + a_3 D_3 m_3$
 - **a**_i = Layer coefficient of layer i
 - **D**_i = Thickness of layer i
 - m_i = Drainage coefficient of layer i

- AASHTO GUIDE FOR Design of Pavement Structures
- SN existing pavement used to estimate structural capacity (remaining life, ESALs)

Structural Number (SN) Determinations

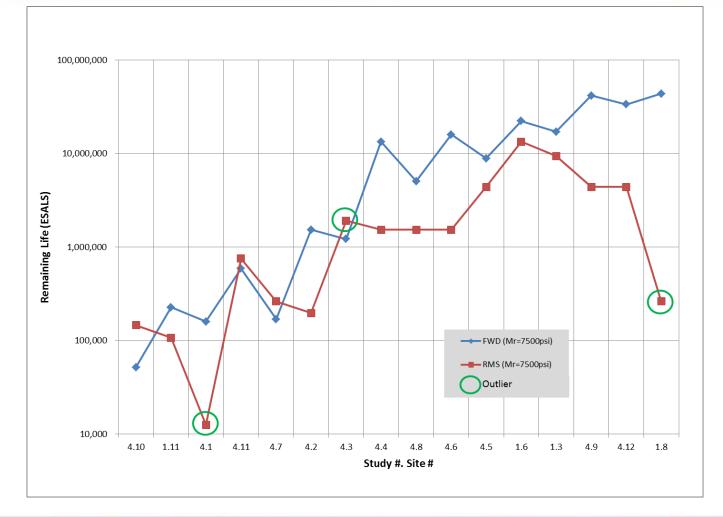
- FWD:
 - Direct output from model (backcalculations)
- RMS:
 - Algorithm based on layer thickness, type & age
 - Reduced structural coefficients if age > 9 yrs
- RWD:
 - Determined remaining pavement life (not SN directly)

Remaining Life Determinations

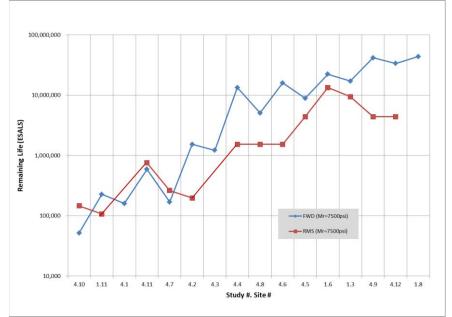

- FWD:
 - AASHTO design equation
 - SN eff & subgrade Mr from FWD calcs
- RMS:
 - AASHTO design equation
 - SN eff from algorithm
 - Subgrade Mr= 52 MPa (CBR-5 default)
 - Subgrade Mr from FWD calcs
- RWD:
 - Asphalt Institute equation for Benkelman Beam
 - Determine ESALS corresponding to "zero overlay thickness"

Analysis of PennDOT Study Data

• 2 Separate Evaluations:


- 16 test sites -detailed data
 - cores, FWD, RWD, RMS pavement history & SN
- Broad network- 463 Km
 - RWD & RMS reported SN only
 - Remaining life estimates RWD & RMS compared

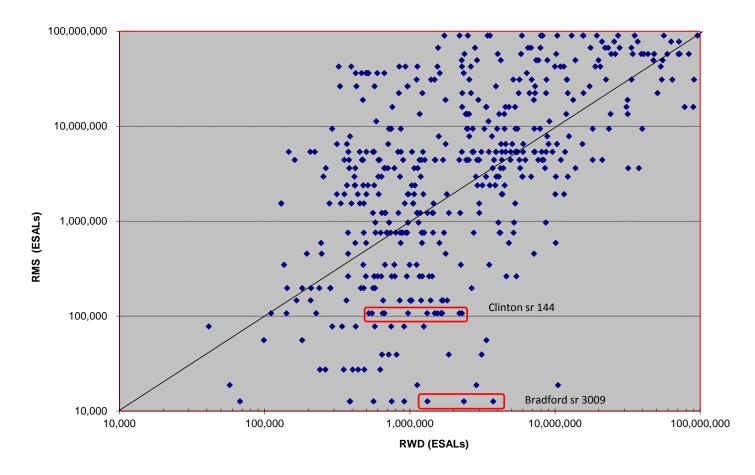
Remaining Life- 3 Methods


9th International Conference on Managing Pavement Assets | May 18-21, 2015

Remaining Life- FWD vs RMS Mr = 52 MPa (7500 psi) assumed

Evaluation of Remaining Life "Outliers"

- 2 sites RMS << RWD
 & FWD
 - Bituminous thickness RMS< cores
- 1 site RMS > FWD
 - RMS bituminous thicker 3"
 > core
- 3 outliers removed-RMS better matches FWD & RWD



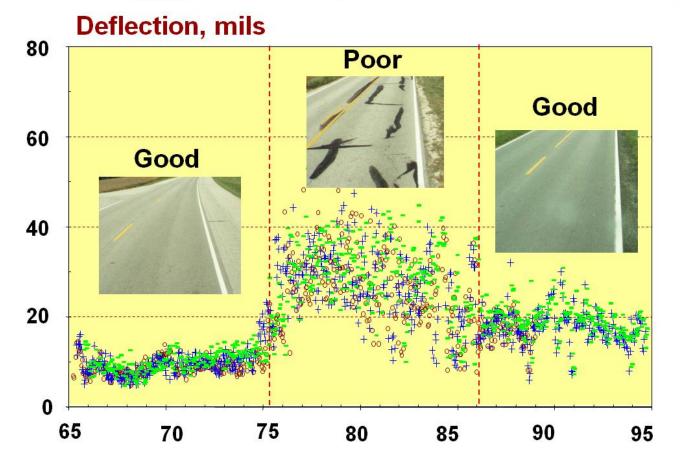
Assessment of Global Network (463 km)

- More data points, but less detailed info
- No FWD testing
- No detailed evaluation of RMS pavement sections

Remaining Life Comparisons (RWD vs. RMS)

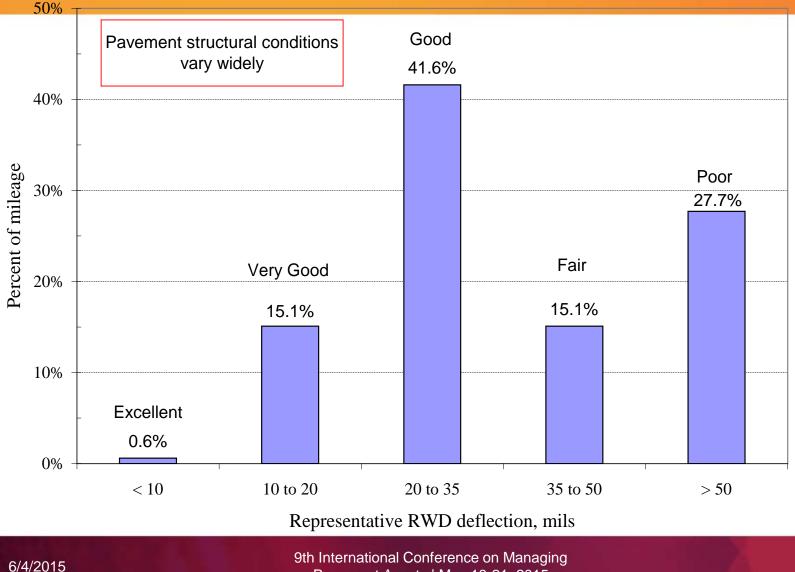
Remaining Life Comparisons

Remaining Life by Business Plan


Business	Remaining Pavement Life (ESALs)		
Plan Group	RWD	RMS	Log RWD/Log RMS
2	225 million	287 million	0.99
3	63 million	198 million	0.93
4	14 million	25 million	0.97

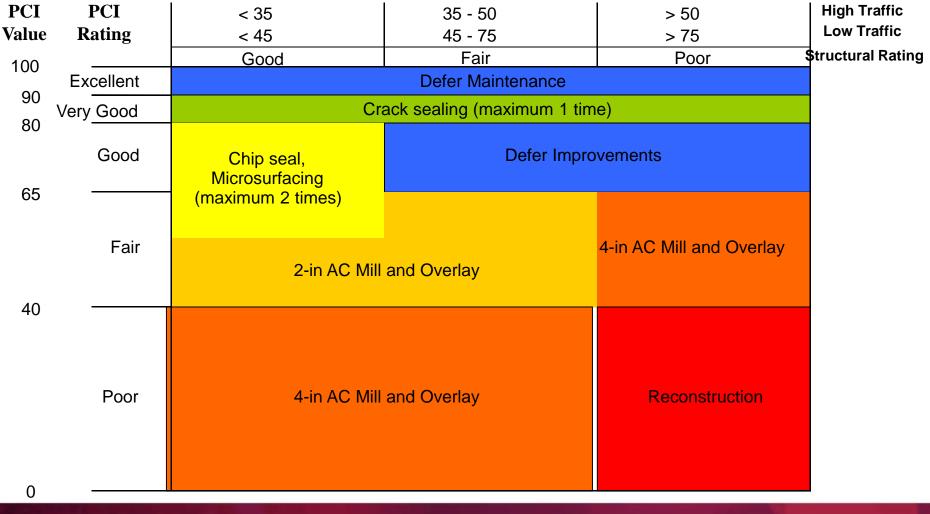
- Both RWD & RMS clearly show strength increases from BP 4 to 3 to 2 (as expected)
- 70% of data from BP-4; good agreement RWD & RMS
- (log RWD/log RMS= 0.97)

PennDOT Study Conclusions


- RMS provides reasonable estimate of SN & remaining life
- RMS & RWD provide comparable estimates of remaining life (log basis reasonable)
- RWD useful in categorizing groups of pavement for network evaluations
- Examples follow

Network Level Strength Classification

Mile Marker

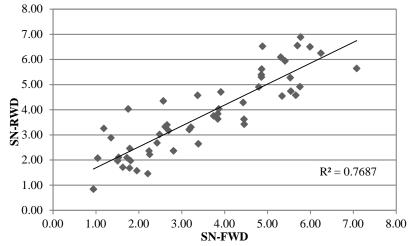

Structural Condition Binning By RWD

Pavement Assets | May 18-21, 2015

Treatment Matrix Based on RWD & PCI

Representative RWD Deflection, mils

Louisiana DOT Study by LSU

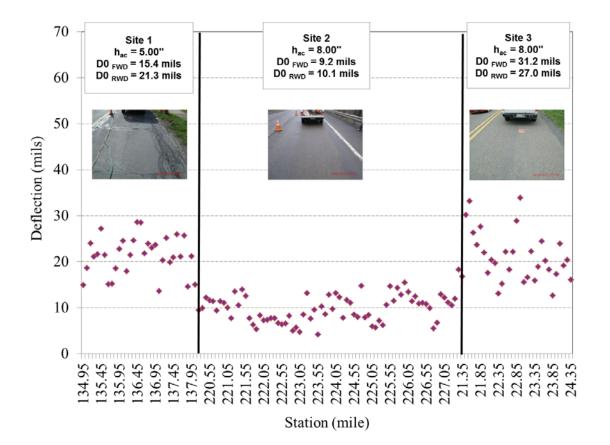

- 2009 Study led by Mostafa Elseifi (LSU)
- Developed model to predict SN from RWD data
 - Based on RWD & FWD data from LA DOT test sites- 16 sites, 2.5 km each

 $SN_{RWD} = -6.37 - \frac{150.69 * RI^{-0.81}}{RI + 19.04} + 23.52 * RWD^{-0.24} - 1.39 * \ln(SD)$

RI = RWD Index (mils²) = Avg. RWD deflection * SD of RWD deflection; SD = standard deviation of RWD deflection on a road segment (mils); RWD = Avg. RWD deflection measured on a road segment (mils); and

LSU Model Accuracy

- Model based on FWD & RWD data from 52 segments
- Accuracy deemed acceptable
 - Coeff of Determination, R² = 0.77



Relationships between SN based on FWD and SN based on RWD for the Independent Network Sites

LSU Model Tested with PennDOT RWD Data

- LSU used PennDOT data to test model outside of LA conditions
- Compared SN from model to SN from FWD
- LA model & LA data- SN prediction error = 27%
- LA model & PA data- SN prediction error = 19%

RWD Deflection Variability & Pavement Strength

From Elseifi et al 2014

Louisiana Study Conclusions

- Scattering & uniformity of RWD data follows road conditions
- LSU model developed with LA data appears applicable beyond LA pavements
- RWD serves as reasonable indicator of structural integrity (network level)
- Further validation & evaluation of model is recommended

Overall Summary

- Innovative Rolling Wheel Deflectometer (RWD) provides tool for rapid evaluation of large road networks
- Lower cost & less traffic disruption than conventional methods
- RWD less accurate than FWD
- RWD useful in categorizing groups of pavement for network evaluations
- PennDOT's RMS algorithm provides reasonable estimate of SN (other agencies could adopt)

Questions???

- Contact Info:
- Paul Wilke, P.E.- Applied Research Associates
- <u>pwilke@ara.com</u> 717-975-3550