

Gonzalo Rada, Ph.D., P.E. Soheil Nazarian, Ph.D., P.E. Beth Visintine, Ph.D., P.E. Rajaratnam Siddharthan, Ph.D. Nadarajah Sivaneswaran, Ph.D., P.E.

WENT ASSETS (ICMPA

international Conference on

WirginiaTech. Transportation Institute

Federal Highway Administration

INTRODUCTION

Pavement Decision-Making

- Highway agencies spend billions of dollars each year on pavement assets
- At heart of decision-making process are pavement management systems (PMS)
 - Ride quality and distress are key indicators
 - Structural adequacy is another important indicator
- Falling Weight Deflectometers (FWDs) represent state-of-the-practice in structural evaluations

FWD Shortcomings

- Stop-and-go operation
- Lane closures required
 - Traffic disruptions
 - Safety hazard

 Data collection is significantly less than continuous operation

Devices that measure deflections at traffic speed can potentially overcome FWD shortcomings

Project Objectives

Objectives:

- Assess and evaluate capability of traffic speed deflection-related devices for pavement structural evaluation at network level
- Develop methodologies for enabling use of devices in pavement management

Literature Review

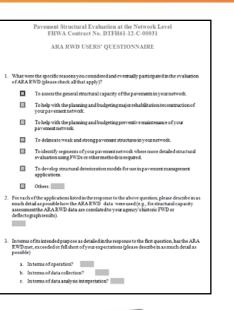
	LITERA	TURE RESEAR	СН	FORM				
Project: FHWA Pavement Structural Evaluation at the Network Level Task: 2. Identification and Assessment of Capable Devices								
Completed by:								
Date (dd/mm/yyyy):								
Reference in FHWA Format (Authors, title, publication #, publisher, date):								
Reference Source:	Report							
	Article							
	Internet							
	Interview		r					
	Presentation			Relevant Subject (check all that apply):	Equipment Information/Specifications Equipment Assessments/Field Studies			
	Other							
		Specify			Data Collecti	ion,	Processing and QC/QA	
Reference Abstract (if contained) or					Data Analysi	is Me	ethodologies	
Brief Summary:					Other			
				Deve texturels are	Spe	ecify		
				Does technology presented in reference merit further consideration under Task 2 "Identification and Assessment of Capable Devices"?	Yes 🔲 No 🔲 If yes, please	e giv	e reason(s):	

24 references

- Arora et al. (2006)
- Rada and Nazarian (2011)
- Flintsch et al. (2012)

Questionnaires & Interviews

Manufacturers


ARA and Greenwood

TSD owners/users

 ARRB (Australia), ANAS (Italy), RBRI (Poland)

RWD users

 Connecticut, Virginia, Louisiana and Kansas DOTs

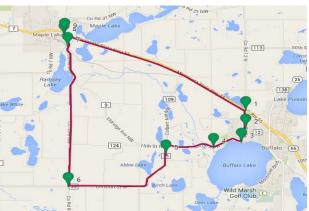
Viable Devices

ARA RWD

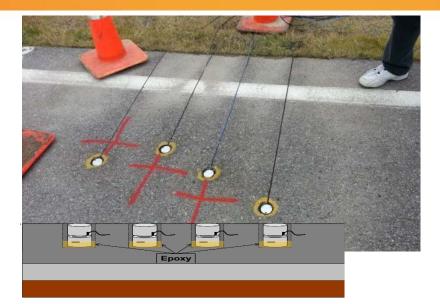
Greenwood TSD

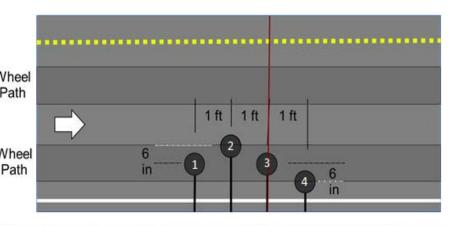
SEPTEMBER 2013 FIELD TRIALS

Devices & Sites

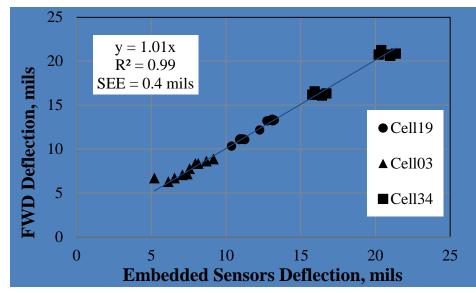


TSD, Curviameter & RWD

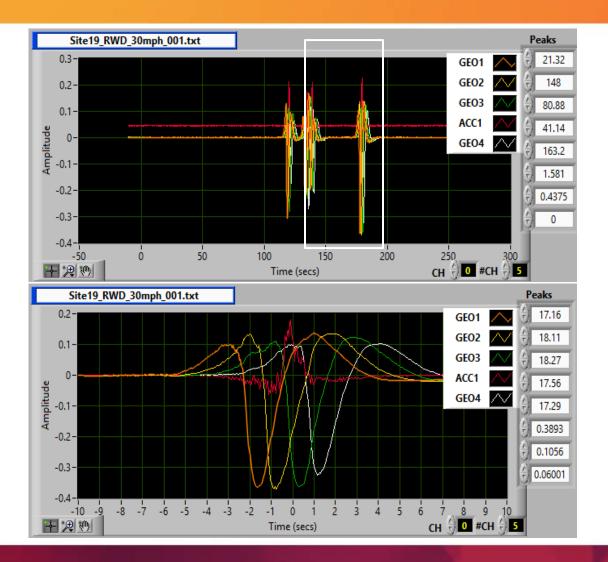




MnROAD Facility

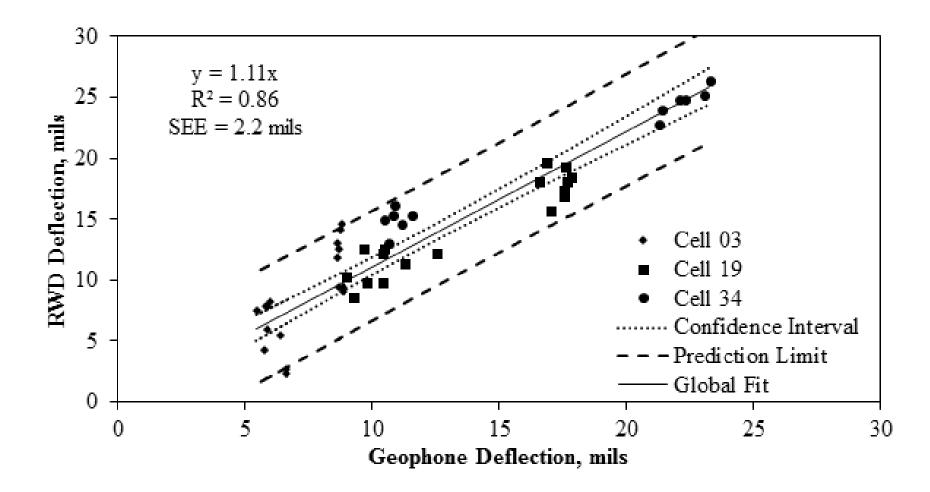


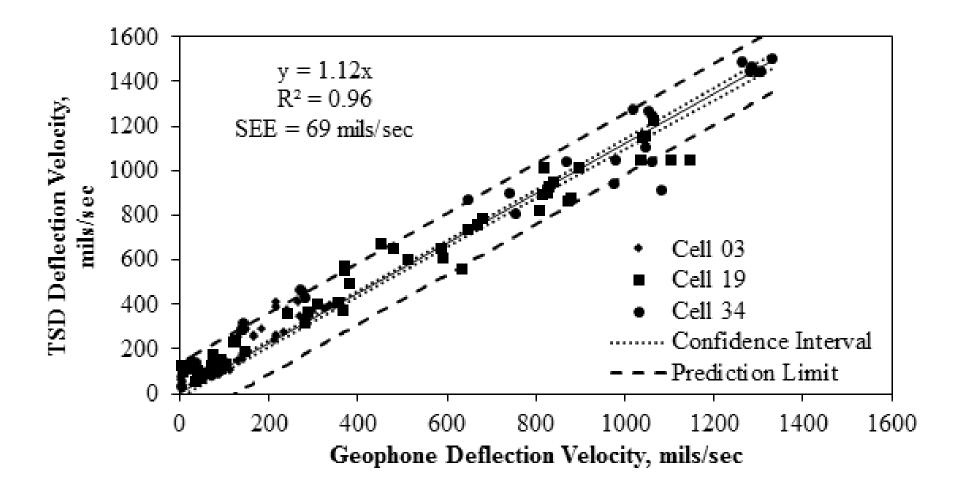
Project Sensors



Typical Response

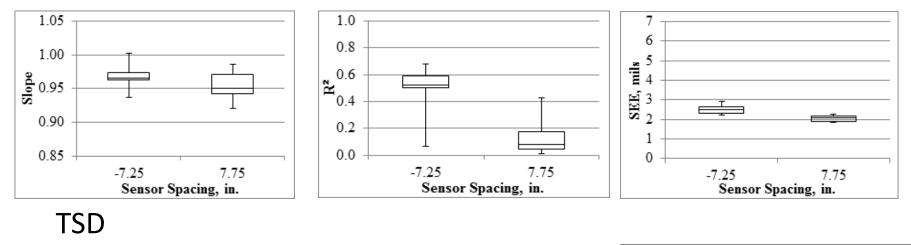
- 1. Time history data retrieved
- 2. True speed calculated
- 3. Rear tire isolated and analyzed

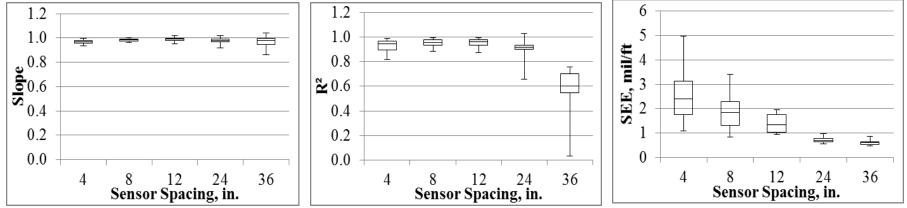

DEVICE ACCURACY & PRECISION


- Statistically compared device and embedded sensor deflection-related measurements
- TSD averaged data at 32.8 ft. and RWD at 50.0 ft.

	TSD			RWD	
Sensor Distance (in.)	Average Difference	Standard Deviation of Difference	Sensor Distance (in.)	Average Difference	Standard Deviation of Difference
4	12%	5%	-7.25	11%	3%
8	4%	3%	7.75	11%	10%
12	6%	7%			
24	11%	8%			

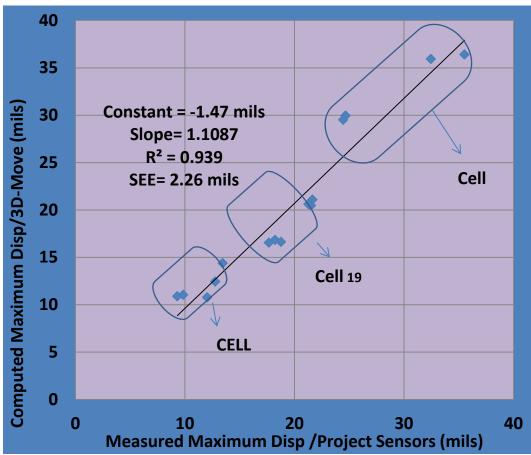
Overall RWD Accuracy Results




Overall TSD Accuracy Results

Precision Comparison

RWD

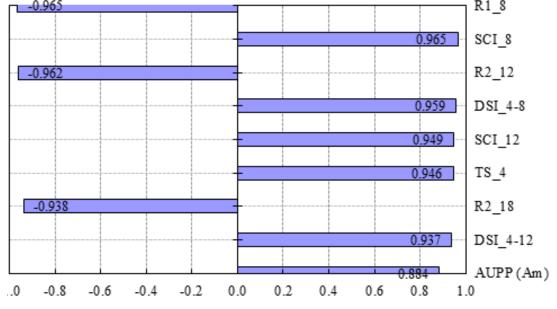


DEFLECTION INDICES & NETWORK LEVEL PMS APPLICATION

3D-Move Program

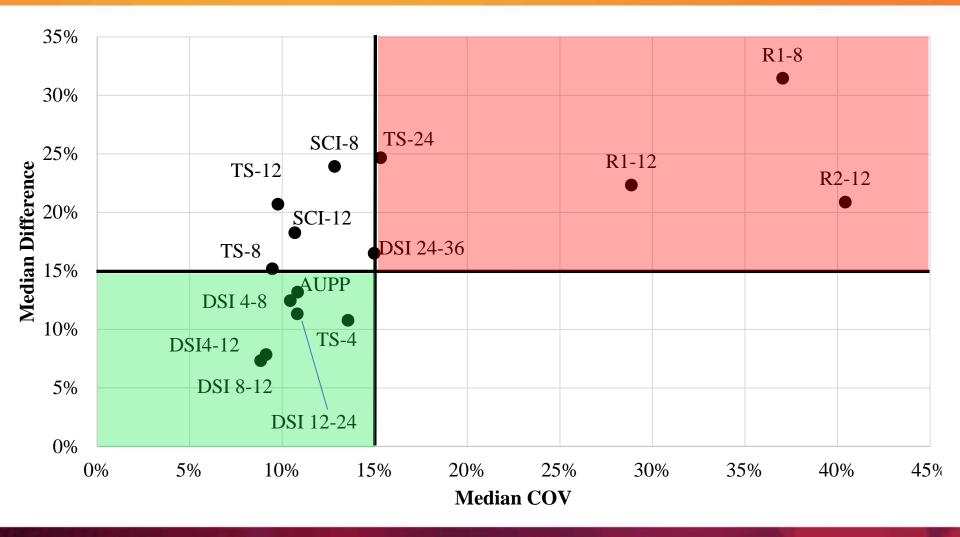
- Estimates dynamic responses within pavement structure using continuum-based finite-layer approach
- Calibrated using project sensor / TSDD measurements
- Further calibrated using strains measured with MnROAD sensors

Deflection Indices


75 indices considered with respect to HMA horizontal strain

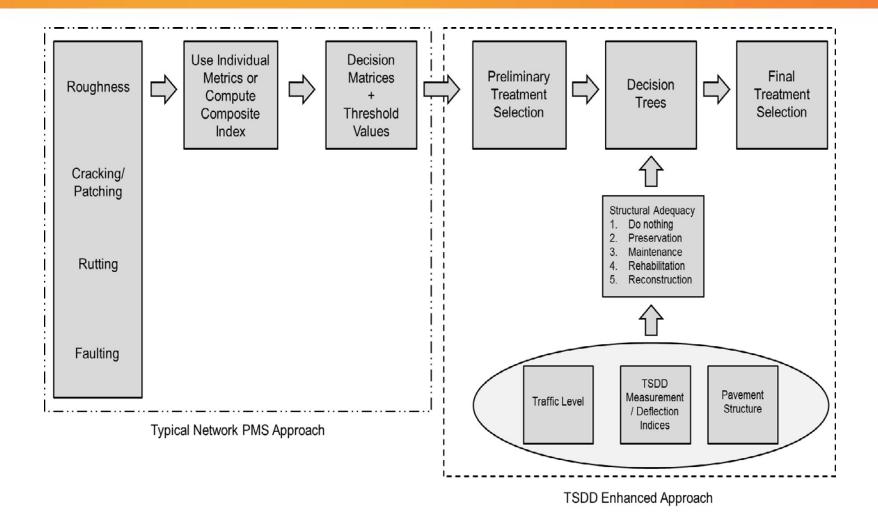
- Radius of Curvature (R1₁₂-Horak1 and R2₁₈-Horak2)
- Surface Curvature Index (SCI₁₂)
- Slope of Deflection (SD₁₂)

Best Indices with All Data (Relationship with Maximum Horizontal Strain)		R²			
Radius of Curvature R=r ² (2D ₀ (1-D _r /D ₀))	R1 ₁₂	0.95			
	R1 ₁₈	0.93			
Radius of Curvature R=r²(2D₀(D₀/Dr - 1))	R2 ₁₈	0.95	Deflection Slope	DSI4-8	0.93
	R2 ₂₄	0.94	Index	DSI4-12	0.94
Surface Curvature	SCI12	0.95	DSI4-r = D4- Dr	DSI4-18	0.91
Index SCI= D₀-Dr	SCI18	0.93	Deflection Slope		
Surface Curvature Index SCIm = D _{max} - D _r	SCIm₅	0.91	Index DSI _{8-r} = D ₈ - Dr	DSI8-12	0.92
	SCIm ₁₂	0.95	Slope of Deflection	SD12	0.95
	SCIm ₁₈	0.93	$SD = tan^{-1} (D_0 - D_r)/r$	SD ₁₈	0.93
			Tangent Slope TS= (dD/dr)	TS ₈	0.94
			Area Under Pavement Profile (5D ₀ -2D _{12"} -2D _{24"} - D _{36"})/2	Am	0.91


JULEA Simulations

- Monte Carlo simulations conducted to confirm adequacy, applicability and validity of best indices
- JULEA-generated database of 15,000 pavement structures

Rank Order Correlation Co-efficient


Overall Field Performance

Recommended Index

- Deflection slope index DSI₄₋₁₂ (difference between deflections at 4 and 12 inches from applied load)
 - Most appropriate index and recommended for use in network-level PMS applications
- Surface curvature index SCI₁₂ (difference between deflections at 0 and 12 inches from applied load)
 - Performed nearly as well as DSI₄₋₁₂, and hence could also be considered

Implementation of Findings

Network Level PMS Application

- 1. Select deflection index for estimating structural condition of pavement
- 2. Estimate horizontal strains at bottom of HMA
- 3. Adjust estimated strains to standard temperature
- 4. Establish structural adequacy using temperature corrected strain

RECOMMENDATIONS

Recommendations

- Need to take implementation steps from concept to full development
- Need validation/calibration of deflection indices and implementation procedures using field data
- Manufacturers should report statistical information (mean, std. dev., etc.)
- Desirable that averaging be done as part of analysis and not data collection

Future Research

- Confirming predictive power of deflection indices through use of measurements taken by strain gauges at bottom of HMA layer during TSDD loadings
- Expanding and validating prediction of subgrade strain to complement horizontal strains at bottom of HMA layer

Thank you!