International contellence unssels lighter as a light and a light and a light and a light as a light **ADDRESSING UNCERTAINTIES OF** PERFORMANCE MODELLING

> Dr Peter Kadar ARRB Group Ltd, Australia

International Conf

Transportation Institute

Acknowledgements

Co-authors

- Michelle Baran QTMR project leader
- Dr Tim Martin rutting models
- Lith Choummanivong LTPP data analysis
- Ranita Sen & Huimin Liu coding the model
- Prof. Sam Savage
- Marc Thebault

UNCERTAINTY

JUST AHEAD

Dealing with uncertainty

- Uncertain information
- Storing uncertain data
- Working with uncertain data

Uncertain information

- External
- Self-afflicted

Average - a convenient untruth

Modelling with distributions

- Current models are based on 'representative' input – i.e. single values
- 'Representative input' deterministic output
- Array input array (distribution) output -> probability

No data aggregation

- Solution:
- Stochastic Information Packet (SIP)

<SIP name="TMI_Norm" count="1270" type="CSV" ver="1.0.0" >(20.23),(61.22),(26.34),(30.85),(35.41) ,(40.05),(31.75),(27.00),(30.36),(22.25), (28.85),(27.43),(21.61),(22.13),(33.11),(8.64),(20.31),(11.69),(20.00),(21.56),(2 3.99),(22.61),(14.34),(21.93),(25.36),(2 1.77),(15.57),(15.55),(36.11),(30.13),(1 4.09),(34.45),(34.10),(30.37),(30.35),(2 4.39),(34.32),(26.56),(8.54),(11.22),(29. 75),(30.77),(28.34),(26.36),(18.92),(34. 49),(31.93),(19.62),(33.82),(27.98),(14.

• Operations with SIPs

Pilot study

- Austroads rutting and roughness models
- A combination of 'certain' (i.e. single number) and 'uncertain' i.e. distributed variables

	min	max	average	distribution		min	max	average	distribution
cracking (% area)	0.5	8.5	3.2		SNCo	1.77	5.32	3.3	
					Thorthwaite	00.0		05.4	n.adha
rutting (mm)	2.0	16.1	6.0		index	20.0	30	25.1	
				<u>Ľu</u>	Maintenance expenditure	0	69594	1139.5	
roughness (IRI)	1.26	4.91	2.8		pa. (\$/km)				L
					MESA	0.5	0.5	0.5	n/a

Rutting model

Rutting model

Reliability level of average input

Conclusions

- Storage of distributions solved
- The full data can be used instead of a 'representative' (average) value
- Benefits: more realistic treatment quantities and cost estimates
- Risk / probability is known

Final message

- Average a convenient untruth
- 'Yes we can' use the full data to model performance

6/4/2015

Risk to contractors

The shape of the data

